点 $(-3, -4)$ を $x$ 軸方向に $2$, $y$ 軸方向に $-3$ だけ平行移動した点の座標を求めます。

幾何学座標平行移動点の移動
2025/5/20

1. 問題の内容

(3,4)(-3, -4)xx 軸方向に 22, yy 軸方向に 3-3 だけ平行移動した点の座標を求めます。

2. 解き方の手順

点の平行移動は、それぞれの座標に移動量を加えることで求められます。
xx 軸方向に 22 移動するので、 xx 座標は 3+2=1-3 + 2 = -1 となります。
yy 軸方向に 3-3 移動するので、 yy 座標は 4+(3)=7-4 + (-3) = -7 となります。

3. 最終的な答え

求める点の座標は (1,7)(-1, -7) です。

「幾何学」の関連問題

円Oに内接する三角形ABCにおいて、$\angle ACB = 75^\circ$, $\angle OAC = 30^\circ$である。 $\angle AOC$, $\angle ABC$, $...

三角形角度円周角の定理二等辺三角形正弦定理
2025/6/6

船の速さと線分AHの情報から円Kの半径を求め、船が見えなくなる時間と∠CADの設定から、x, yに関する関係式を求めます。ここで、AC = x, AD = y とし、点Cから点Dまでの移動時間を 21...

三角比余弦定理面積関係式
2025/6/6

点Aから直線lに下ろした垂線の足をHとする。点Bから点Hまでの船の移動時間を $\frac{9}{5}$ 分とし、$tan∠BAH = \frac{1}{4}$ とする。$AH = \frac{12}...

三角比垂線tan速度距離
2025/6/6

点Oを中心とする半径1の円に三角形ABCが内接している。$5 \vec{OA} + 8 \vec{OB} + 7 \vec{OC} = \vec{0}$ が成り立つとき、内積$\vec{OA} \cd...

ベクトル内積三角形面積
2025/6/6

円 $x^2 + y^2 = 10$ 上の点 $(a, -3a)$ における接線の方程式を求める問題です。ただし、$a > 0$ とします。

接線方程式
2025/6/6

円 $x^2 + y^2 = 25$ 上の点 $(4a, 3a)$ における接線の方程式を求める問題です。

接線座標平面方程式
2025/6/6

円 $x^2 + y^2 = 7$ 上の点 $(-2, -\sqrt{3})$ における接線の方程式を求めよ。

接線方程式
2025/6/6

円 $x^2 + y^2 = 25$ 上の点 $(4, -3)$ における接線の方程式を求めます。

接線接線の方程式
2025/6/6

円 $x^2 + y^2 = 36$ 上の点 $(0, -6)$ における接線の方程式を求めよ。

接線座標平面
2025/6/6

点P(3,5)を通り、三角形ABCの面積を二等分する直線の式を求めよ。ただし、A(5,7), B(0,2), C(8,0)である。

三角形面積直線座標平面
2025/6/6