円 $x^2 + y^2 = 7$ 上の点 $(-2, -\sqrt{3})$ における接線の方程式を求めよ。

幾何学接線方程式
2025/6/6

1. 問題の内容

x2+y2=7x^2 + y^2 = 7 上の点 (2,3)(-2, -\sqrt{3}) における接線の方程式を求めよ。

2. 解き方の手順

x2+y2=r2x^2 + y^2 = r^2 上の点 (x1,y1)(x_1, y_1) における接線の方程式は x1x+y1y=r2x_1x + y_1y = r^2 で表されます。
この問題では、r2=7r^2 = 7, x1=2x_1 = -2, y1=3y_1 = -\sqrt{3} なので、接線の方程式は、
2x3y=7-2x - \sqrt{3}y = 7
となります。これを整理すると、
2x+3y+7=02x + \sqrt{3}y + 7 = 0

3. 最終的な答え

2x+3y+7=02x + \sqrt{3}y + 7 = 0

「幾何学」の関連問題

原点$(0, 0)$と直線$2x - 3y + 6 = 0$との距離を求める。

距離直線の方程式三角形の面積座標平面
2025/6/7

$\triangle ABC$ において、$b=2$, $c=1+\sqrt{3}$, $A=60^\circ$ のとき、残りの辺の長さ $a$ と角の大きさ $B, C$ を求める問題です。

三角形余弦定理正弦定理辺と角
2025/6/7

三角形ABCにおいて、$a=4$, $b=3$, $c=2$のとき、角Aは鋭角、直角、鈍角のどれであるかを選択する問題。

三角形余弦定理角度鈍角
2025/6/7

座標平面上に4点A(-1, 0), B(1, 0), P(-1, 3), Q(1, 1)がある。線分PQ上に点Rをとり、そのx座標を$a$とする。三角形ABRの外接円をCとし、その中心をSとする。 (...

座標平面外接円垂直二等分線三角形座標
2025/6/7

三角形ABCにおいて、$AB=4$, $BC=6$, $CA=5$とする。内心をIとし、直線CIと辺ABの交点をDとする。AD:DB, AD, CI:IDを求める問題です。

三角形内心角の二等分線メネラウスの定理
2025/6/7

円の接線に関する問題で、PTは円の接線であり、PA=2, PT=y, AB=yであるとき、yの値を求める問題です。

接線接線と割線の定理二次方程式解の公式
2025/6/7

一辺の長さが $a$ の正八面体の体積、外接する球の半径、内接する球の半径を求める。

正八面体体積外接球内接球空間図形
2025/6/7

1辺の長さが $a$ の正八面体の体積と、この正八面体に外接する球、内接する球の半径を求める。

立体図形正八面体体積外接球内接球空間図形
2025/6/7

一辺の長さが $a$ の正八面体の体積と、この正八面体に外接する球、内接する球の半径を求める。

体積正八面体外接球内接球
2025/6/7

円に内接する四角形 $ABCD$ について、以下の条件が与えられている。 $AB = 1$, $BC = 5$, $\cos{\angle ABC} = -\frac{1}{5}$, 四角形 $ABC...

円に内接する四角形余弦定理面積三角比
2025/6/7