$x = \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}$、 $y = \frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}$ であるとき、$x+y$ の値を求めよ。代数学式の計算有理化平方根2025/5/211. 問題の内容x=6−26+2x = \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}x=6+26−2、 y=6+26−2y = \frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}y=6−26+2 であるとき、x+yx+yx+y の値を求めよ。2. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=6−26+2x = \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}x=6+26−2 を有理化します。x=(6−2)(6−2)(6+2)(6−2)x = \frac{(\sqrt{6}-\sqrt{2})(\sqrt{6}-\sqrt{2})}{(\sqrt{6}+\sqrt{2})(\sqrt{6}-\sqrt{2})}x=(6+2)(6−2)(6−2)(6−2)x=(6−2)26−2x = \frac{(\sqrt{6}-\sqrt{2})^2}{6-2}x=6−2(6−2)2x=6−212+24x = \frac{6 - 2\sqrt{12} + 2}{4}x=46−212+2x=8−24⋅34x = \frac{8 - 2\sqrt{4 \cdot 3}}{4}x=48−24⋅3x=8−434x = \frac{8 - 4\sqrt{3}}{4}x=48−43x=2−3x = 2 - \sqrt{3}x=2−3y=6+26−2y = \frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}y=6−26+2 を有理化します。y=(6+2)(6+2)(6−2)(6+2)y = \frac{(\sqrt{6}+\sqrt{2})(\sqrt{6}+\sqrt{2})}{(\sqrt{6}-\sqrt{2})(\sqrt{6}+\sqrt{2})}y=(6−2)(6+2)(6+2)(6+2)y=(6+2)26−2y = \frac{(\sqrt{6}+\sqrt{2})^2}{6-2}y=6−2(6+2)2y=6+212+24y = \frac{6 + 2\sqrt{12} + 2}{4}y=46+212+2y=8+24⋅34y = \frac{8 + 2\sqrt{4 \cdot 3}}{4}y=48+24⋅3y=8+434y = \frac{8 + 4\sqrt{3}}{4}y=48+43y=2+3y = 2 + \sqrt{3}y=2+3したがって、x+y=(2−3)+(2+3)x+y = (2 - \sqrt{3}) + (2 + \sqrt{3})x+y=(2−3)+(2+3)x+y=4x+y = 4x+y=43. 最終的な答えx+y=4x+y = 4x+y=4