集合 $A = \{1, 3, 6, -a^2 + 5a\}$ と集合 $B = \{2, 4, 8, 2a+1, -a+7\}$ が与えられている。$A \cap B = \{3, 4\}$ となるような $a$ の値を求め、そのときの $A \cup B$ の要素の個数を求める。
2025/5/21
1. 問題の内容
集合 と集合 が与えられている。 となるような の値を求め、そのときの の要素の個数を求める。
2. 解き方の手順
より、3と4は集合AとBの両方に含まれる。
まず、Aについて考えると、3は既にAに含まれているので、4または が4になる必要がある。
同様に、Bについて考えると、4は既にBに含まれているので、3または または が3になる必要がある。
(1) Aについて場合分け:
(i) の場合
(2) Bについて場合分け:
(i) の場合
(ii) の場合
したがって、 または の可能性がある。
(3) a=1 の場合:
このとき、 より、不適。
(4) a=4 の場合:
このとき、 となる。
したがって、 である。
このとき、 であり、 である。
の要素の個数は 7個である。
3. 最終的な答え
の要素の個数は 7個