赤、青、黄、緑、紫の5個の球を円形につなぎ合わせて首飾りを作るとき、何通りの作り方があるか。

離散数学組み合わせ順列円順列対称性
2025/5/21

1. 問題の内容

赤、青、黄、緑、紫の5個の球を円形につなぎ合わせて首飾りを作るとき、何通りの作り方があるか。

2. 解き方の手順

円順列の問題です。5個のものを円形に並べる順列の総数は (51)!(5-1)! です。しかし、首飾りの場合は裏返すことができるので、同じ並び方が2回カウントされています。そのため、(51)!(5-1)! を2で割る必要があります。
まず、5個の球を円形に並べる順列の総数を求めます。
(51)!=4!=4×3×2×1=24(5-1)! = 4! = 4 \times 3 \times 2 \times 1 = 24
次に、裏返すことができることを考慮して、2で割ります。
24÷2=1224 \div 2 = 12

3. 最終的な答え

12通り

「離散数学」の関連問題

6人家族(両親、息子2人、娘2人)が円卓に座る場合の数を、以下の条件で求めます。 (1) 座り方全体の数 (2) 両親が隣り合う場合の数 (3) 両親が向かい合う場合の数 (4) 男女が交互に座る場合...

順列円順列場合の数組み合わせ
2025/6/7

異なる7個の石をひもでつないで首飾りを作るとき、首飾りの作り方は何通りあるかを求める問題です。

組み合わせ順列円順列対称性
2025/6/7

与えられたブール代数の式 $(A \cdot B) \cdot (\overline{A} + B)$ を簡略化します。

ブール代数論理演算式の簡略化
2025/6/7

与えられたブール代数の式 $(A \cdot B) \cdot (\overline{A+B})$ を簡略化します。

ブール代数論理演算論理式簡略化ド・モルガンの法則真理値表
2025/6/7

与えられたブール代数の式を簡略化すること。式は $\overline{A(A \cdot B)} + B(A \cdot B)$ です。

ブール代数論理演算論理式の簡略化
2025/6/7

"LETTER"の6文字をすべて使って文字列を作るとき、文字列は何個作れるか。

順列組み合わせ文字列重複順列
2025/6/7

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$、集合 $A = \{2, 4, 6, 8\}$、集合 $B = \{3, 6, 9\}$が与えられたとき、以下の集合を...

集合集合演算補集合和集合積集合
2025/6/7

(1) 8個の数字 1, 1, 1, 2, 3, 3, 3, 3 をすべて使って8桁の整数を作るとき、整数は何個作れるか。 (2) LETTER の6文字をすべて使って文字列を作るとき、文字列は何個作...

順列組み合わせ重複順列場合の数
2025/6/7

6つの部分に区切られた円盤を、6色の絵の具を使って塗り分ける方法の数を求める問題です。ただし、回転によって同じになる塗り方は同一とみなします。

組み合わせ順列回転群論
2025/6/7

大人3人と子供3人が輪になって並ぶときの並び方の場合の数を求める問題です。 (1) 大人と子供が交互に並ぶ場合の数 (2) 特定の子供A, Bが隣り合う場合の数

場合の数順列円順列組み合わせ
2025/6/7