$(\cos x)' = -\sin x$ を示す問題です。解析学微分三角関数導関数極限2025/5/211. 問題の内容(cosx)′=−sinx(\cos x)' = -\sin x(cosx)′=−sinx を示す問題です。2. 解き方の手順導関数の定義に従って計算します。f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}f′(x)=limh→0hf(x+h)−f(x)f(x)=cosxf(x) = \cos xf(x)=cosx の場合、(cosx)′=limh→0cos(x+h)−cosxh(\cos x)' = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}(cosx)′=limh→0hcos(x+h)−cosx三角関数の加法定理を用いて、cos(x+h)=cosxcosh−sinxsinh\cos(x+h) = \cos x \cos h - \sin x \sin hcos(x+h)=cosxcosh−sinxsinh なので、(cosx)′=limh→0cosxcosh−sinxsinh−cosxh(\cos x)' = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}(cosx)′=limh→0hcosxcosh−sinxsinh−cosx(cosx)′=limh→0cosx(cosh−1)−sinxsinhh(\cos x)' = \lim_{h \to 0} \frac{\cos x (\cos h - 1) - \sin x \sin h}{h}(cosx)′=limh→0hcosx(cosh−1)−sinxsinh(cosx)′=limh→0cosxcosh−1h−limh→0sinxsinhh(\cos x)' = \lim_{h \to 0} \cos x \frac{\cos h - 1}{h} - \lim_{h \to 0} \sin x \frac{\sin h}{h}(cosx)′=limh→0cosxhcosh−1−limh→0sinxhsinhここで、limh→0cosh−1h=0\lim_{h \to 0} \frac{\cos h - 1}{h} = 0limh→0hcosh−1=0 と limh→0sinhh=1\lim_{h \to 0} \frac{\sin h}{h} = 1limh→0hsinh=1 を用いると、(cosx)′=cosx⋅0−sinx⋅1(\cos x)' = \cos x \cdot 0 - \sin x \cdot 1(cosx)′=cosx⋅0−sinx⋅1(cosx)′=−sinx(\cos x)' = -\sin x(cosx)′=−sinx3. 最終的な答え(cosx)′=−sinx(\cos x)' = -\sin x(cosx)′=−sinx