$AB = AC$, $BC = 2$ である三角形ABCにおいて、内積$\overrightarrow{BA} \cdot \overrightarrow{BC}$を求めよ。幾何学ベクトル内積余弦定理三角形2025/5/211. 問題の内容AB=ACAB = ACAB=AC, BC=2BC = 2BC=2 である三角形ABCにおいて、内積BA→⋅BC→\overrightarrow{BA} \cdot \overrightarrow{BC}BA⋅BCを求めよ。2. 解き方の手順まず、AB=AC=xAB = AC = xAB=AC=x とおく。BA→⋅BC→\overrightarrow{BA} \cdot \overrightarrow{BC}BA⋅BCの内積の定義より、BA→⋅BC→=∣BA→∣∣BC→∣cos∠ABC=x⋅2⋅cos∠ABC=2xcos∠ABC\overrightarrow{BA} \cdot \overrightarrow{BC} = |\overrightarrow{BA}||\overrightarrow{BC}| \cos{\angle ABC} = x \cdot 2 \cdot \cos{\angle ABC} = 2x \cos{\angle ABC}BA⋅BC=∣BA∣∣BC∣cos∠ABC=x⋅2⋅cos∠ABC=2xcos∠ABC次に、△ABC\triangle ABC△ABCにおいて余弦定理を用いると、AC2=AB2+BC2−2⋅AB⋅BC⋅cos∠ABCAC^2 = AB^2 + BC^2 - 2 \cdot AB \cdot BC \cdot \cos{\angle ABC}AC2=AB2+BC2−2⋅AB⋅BC⋅cos∠ABCx2=x2+22−2⋅x⋅2⋅cos∠ABCx^2 = x^2 + 2^2 - 2 \cdot x \cdot 2 \cdot \cos{\angle ABC}x2=x2+22−2⋅x⋅2⋅cos∠ABC0=4−4xcos∠ABC0 = 4 - 4x \cos{\angle ABC}0=4−4xcos∠ABC4xcos∠ABC=44x \cos{\angle ABC} = 44xcos∠ABC=4xcos∠ABC=1x \cos{\angle ABC} = 1xcos∠ABC=1したがって、BA→⋅BC→=2xcos∠ABC=2⋅1=2\overrightarrow{BA} \cdot \overrightarrow{BC} = 2x \cos{\angle ABC} = 2 \cdot 1 = 2BA⋅BC=2xcos∠ABC=2⋅1=23. 最終的な答えBA→⋅BC→=2\overrightarrow{BA} \cdot \overrightarrow{BC} = 2BA⋅BC=2