月曜日から土曜日までの6日間のうち、塾に2日通う。塾に通う日が連続しないようにする場合、塾に通う曜日の組み合わせは何通りあるかを求める問題です。

確率論・統計学組み合わせ場合の数数え上げ条件付き
2025/3/24

1. 問題の内容

月曜日から土曜日までの6日間のうち、塾に2日通う。塾に通う日が連続しないようにする場合、塾に通う曜日の組み合わせは何通りあるかを求める問題です。

2. 解き方の手順

まず、6日間から2日を選ぶすべての組み合わせの数を求めます。これは組み合わせの公式で計算できます。
{}_n C_r = \frac{n!}{r!(n-r)!}
ここで、nn は全体の数、rr は選ぶ数です。この問題では n=6n=6r=2r=2 なので、
{}_6 C_2 = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \times 5}{2 \times 1} = 15
次に、塾に通う日が連続する場合の数を考えます。連続する日は以下の5パターンです。
* 月曜日と火曜日
* 火曜日と水曜日
* 水曜日と木曜日
* 木曜日と金曜日
* 金曜日と土曜日
塾に通う日が連続しない場合の数は、すべての組み合わせの数から連続する場合の数を引けば求められます。
15 - 5 = 10

3. 最終的な答え

10通り

「確率論・統計学」の関連問題

ある農場で生産した卵400個を無作為抽出し、その重さを調べたところ平均が53.4gであった。母標準偏差が2.5gであるとき、この農場で生産されている卵の重さの平均を信頼度95%で推定し、その範囲を求め...

統計的推定信頼区間母平均標本平均標準偏差
2025/4/5

ある中学校の1年生40人の垂直とびの記録が、度数分布表と相対度数の分布表にまとめられている。 (1) 表中の空欄ア、イ、ウに当てはまる数を求める。 (2) 45cm以上跳んだ生徒の割合を求める。

度数分布表相対度数割合データ分析
2025/4/5

母平均58、母標準偏差10の母集団から、大きさ225の標本を無作為抽出したとき、標本平均$\bar{X}$が57.5以上58.5以下となる確率を求める問題です。正規分布表が与えられています。

標本平均正規分布標準化確率
2025/4/5

母平均が 58、母標準偏差が 10 の母集団から、大きさ 25 の標本を無作為抽出したときの標本平均 $\overline{X}$ の期待値 $E(\overline{X})$ と標準偏差 $\sig...

標本平均期待値標準偏差統計的推測
2025/4/5

10点のカードが20枚、5点のカードが30枚、1点のカードが50枚の計100枚のカードがある。この100枚のカードを母集団とし、カードの点数を$X$とする時、母平均$m$、母分散$\sigma^2$、...

母平均母分散母標準偏差確率分布
2025/4/5

10点のカードが20枚、5点のカードが30枚、1点のカードが50枚ある。これらの合計100枚のカードを母集団として、カードの点数を確率変数 $X$ とするとき、母集団分布を求め、表の空欄を埋める問題で...

確率変数母集団分布確率
2025/4/5

1, 2, 3, 4 の数字が書かれたカードがそれぞれ 2枚, 1枚, 1枚, 1枚ある。これらのカードから1枚ずつ元に戻さずに2枚続けて引くとき、偶数のカードを引く回数をXとする。確率変数Xの確率分...

確率分布確率変数事象の確率組み合わせ
2025/4/5

1から4の数字が書かれたカードがそれぞれ4枚、3枚、2枚、1枚ある。合計10枚のカードから2枚を続けて引くとき、偶数のカードを引く回数Xの確率分布を求める問題。Xは0, 1, 2のいずれかの値をとる。

確率確率分布事象
2025/4/5

袋の中に1等のくじが1本、2等のくじが2本、3等のくじが7本入っている。1等の賞金は100円、2等の賞金は50円、3等の賞金は10円である。この袋からくじを1本取り出すとき、あたる賞金を確率変数 $X...

確率分布確率変数期待値
2025/4/5

1から5までの数字が書かれたカードが、それぞれ1枚、3枚、3枚、2枚、1枚ある。この中から1枚のカードを引くとき、出る数字を確率変数Xとする。Xの確率分布を求めなさい。

確率分布確率変数期待値確率
2025/4/5