与えられた6つの2次式を平方完成する問題です。代数学平方完成二次式数式処理2025/5/251. 問題の内容与えられた6つの2次式を平方完成する問題です。2. 解き方の手順(1) x2+8xx^2 + 8xx2+8xx2+8x=(x+4)2−42=(x+4)2−16x^2 + 8x = (x + 4)^2 - 4^2 = (x + 4)^2 - 16x2+8x=(x+4)2−42=(x+4)2−16(2) x2−6x+8x^2 - 6x + 8x2−6x+8x2−6x+8=(x−3)2−32+8=(x−3)2−9+8=(x−3)2−1x^2 - 6x + 8 = (x - 3)^2 - 3^2 + 8 = (x - 3)^2 - 9 + 8 = (x - 3)^2 - 1x2−6x+8=(x−3)2−32+8=(x−3)2−9+8=(x−3)2−1(3) 2x2−8x+52x^2 - 8x + 52x2−8x+52x2−8x+5=2(x2−4x)+5=2((x−2)2−22)+5=2(x−2)2−8+5=2(x−2)2−32x^2 - 8x + 5 = 2(x^2 - 4x) + 5 = 2((x - 2)^2 - 2^2) + 5 = 2(x - 2)^2 - 8 + 5 = 2(x - 2)^2 - 32x2−8x+5=2(x2−4x)+5=2((x−2)2−22)+5=2(x−2)2−8+5=2(x−2)2−3(4) 3x2+6x+23x^2 + 6x + 23x2+6x+23x2+6x+2=3(x2+2x)+2=3((x+1)2−12)+2=3(x+1)2−3+2=3(x+1)2−13x^2 + 6x + 2 = 3(x^2 + 2x) + 2 = 3((x + 1)^2 - 1^2) + 2 = 3(x + 1)^2 - 3 + 2 = 3(x + 1)^2 - 13x2+6x+2=3(x2+2x)+2=3((x+1)2−12)+2=3(x+1)2−3+2=3(x+1)2−1(5) x2+x−2x^2 + x - 2x2+x−2x2+x−2=(x+12)2−(12)2−2=(x+12)2−14−2=(x+12)2−14−84=(x+12)2−94x^2 + x - 2 = (x + \frac{1}{2})^2 - (\frac{1}{2})^2 - 2 = (x + \frac{1}{2})^2 - \frac{1}{4} - 2 = (x + \frac{1}{2})^2 - \frac{1}{4} - \frac{8}{4} = (x + \frac{1}{2})^2 - \frac{9}{4}x2+x−2=(x+21)2−(21)2−2=(x+21)2−41−2=(x+21)2−41−48=(x+21)2−49(6) −2x2+6x+4-2x^2 + 6x + 4−2x2+6x+4−2x2+6x+4=−2(x2−3x)+4=−2((x−32)2−(32)2)+4=−2(x−32)2+2⋅94+4=−2(x−32)2+92+82=−2(x−32)2+172-2x^2 + 6x + 4 = -2(x^2 - 3x) + 4 = -2((x - \frac{3}{2})^2 - (\frac{3}{2})^2) + 4 = -2(x - \frac{3}{2})^2 + 2 \cdot \frac{9}{4} + 4 = -2(x - \frac{3}{2})^2 + \frac{9}{2} + \frac{8}{2} = -2(x - \frac{3}{2})^2 + \frac{17}{2}−2x2+6x+4=−2(x2−3x)+4=−2((x−23)2−(23)2)+4=−2(x−23)2+2⋅49+4=−2(x−23)2+29+28=−2(x−23)2+2173. 最終的な答え(1) (x+4)2−16(x + 4)^2 - 16(x+4)2−16(2) (x−3)2−1(x - 3)^2 - 1(x−3)2−1(3) 2(x−2)2−32(x - 2)^2 - 32(x−2)2−3(4) 3(x+1)2−13(x + 1)^2 - 13(x+1)2−1(5) (x+12)2−94(x + \frac{1}{2})^2 - \frac{9}{4}(x+21)2−49(6) −2(x−32)2+172-2(x - \frac{3}{2})^2 + \frac{17}{2}−2(x−23)2+217