与えられた式 $(2a+1)^4$ と $(x+2y)^5$ を展開する。代数学二項定理展開多項式2025/3/251. 問題の内容与えられた式 (2a+1)4(2a+1)^4(2a+1)4 と (x+2y)5(x+2y)^5(x+2y)5 を展開する。2. 解き方の手順(5) (2a+1)4(2a+1)^4(2a+1)4 の展開二項定理を用いる。二項定理は (a+b)n=∑k=0n(nk)an−kbk(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k(a+b)n=∑k=0n(kn)an−kbk で表される。(2a+1)4=(40)(2a)4(1)0+(41)(2a)3(1)1+(42)(2a)2(1)2+(43)(2a)1(1)3+(44)(2a)0(1)4(2a+1)^4 = \binom{4}{0} (2a)^4 (1)^0 + \binom{4}{1} (2a)^3 (1)^1 + \binom{4}{2} (2a)^2 (1)^2 + \binom{4}{3} (2a)^1 (1)^3 + \binom{4}{4} (2a)^0 (1)^4(2a+1)4=(04)(2a)4(1)0+(14)(2a)3(1)1+(24)(2a)2(1)2+(34)(2a)1(1)3+(44)(2a)0(1)4(40)=1\binom{4}{0} = 1(04)=1(41)=4\binom{4}{1} = 4(14)=4(42)=4!2!2!=4×32×1=6\binom{4}{2} = \frac{4!}{2!2!} = \frac{4 \times 3}{2 \times 1} = 6(24)=2!2!4!=2×14×3=6(43)=4\binom{4}{3} = 4(34)=4(44)=1\binom{4}{4} = 1(44)=1(2a+1)4=1×(16a4)×1+4×(8a3)×1+6×(4a2)×1+4×(2a)×1+1×1×1(2a+1)^4 = 1 \times (16a^4) \times 1 + 4 \times (8a^3) \times 1 + 6 \times (4a^2) \times 1 + 4 \times (2a) \times 1 + 1 \times 1 \times 1(2a+1)4=1×(16a4)×1+4×(8a3)×1+6×(4a2)×1+4×(2a)×1+1×1×1=16a4+32a3+24a2+8a+1= 16a^4 + 32a^3 + 24a^2 + 8a + 1=16a4+32a3+24a2+8a+1(6) (x+2y)5(x+2y)^5(x+2y)5 の展開二項定理を用いる。(x+2y)5=(50)x5(2y)0+(51)x4(2y)1+(52)x3(2y)2+(53)x2(2y)3+(54)x1(2y)4+(55)x0(2y)5(x+2y)^5 = \binom{5}{0} x^5 (2y)^0 + \binom{5}{1} x^4 (2y)^1 + \binom{5}{2} x^3 (2y)^2 + \binom{5}{3} x^2 (2y)^3 + \binom{5}{4} x^1 (2y)^4 + \binom{5}{5} x^0 (2y)^5(x+2y)5=(05)x5(2y)0+(15)x4(2y)1+(25)x3(2y)2+(35)x2(2y)3+(45)x1(2y)4+(55)x0(2y)5(50)=1\binom{5}{0} = 1(05)=1(51)=5\binom{5}{1} = 5(15)=5(52)=5!2!3!=5×42×1=10\binom{5}{2} = \frac{5!}{2!3!} = \frac{5 \times 4}{2 \times 1} = 10(25)=2!3!5!=2×15×4=10(53)=10\binom{5}{3} = 10(35)=10(54)=5\binom{5}{4} = 5(45)=5(55)=1\binom{5}{5} = 1(55)=1(x+2y)5=1×x5×1+5×x4×2y+10×x3×(4y2)+10×x2×(8y3)+5×x×(16y4)+1×1×(32y5)(x+2y)^5 = 1 \times x^5 \times 1 + 5 \times x^4 \times 2y + 10 \times x^3 \times (4y^2) + 10 \times x^2 \times (8y^3) + 5 \times x \times (16y^4) + 1 \times 1 \times (32y^5)(x+2y)5=1×x5×1+5×x4×2y+10×x3×(4y2)+10×x2×(8y3)+5×x×(16y4)+1×1×(32y5)=x5+10x4y+40x3y2+80x2y3+80xy4+32y5= x^5 + 10x^4y + 40x^3y^2 + 80x^2y^3 + 80xy^4 + 32y^5=x5+10x4y+40x3y2+80x2y3+80xy4+32y53. 最終的な答え(5) (2a+1)4=16a4+32a3+24a2+8a+1(2a+1)^4 = 16a^4 + 32a^3 + 24a^2 + 8a + 1(2a+1)4=16a4+32a3+24a2+8a+1(6) (x+2y)5=x5+10x4y+40x3y2+80x2y3+80xy4+32y5(x+2y)^5 = x^5 + 10x^4y + 40x^3y^2 + 80x^2y^3 + 80xy^4 + 32y^5(x+2y)5=x5+10x4y+40x3y2+80x2y3+80xy4+32y5