与えられた問題は、次の数列の和を求めることです。 $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$解析学数列級数部分分数分解シグマ2025/5/261. 問題の内容与えられた問題は、次の数列の和を求めることです。∑k=1n1k(k+1)(k+2)\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}∑k=1nk(k+1)(k+2)12. 解き方の手順部分分数分解を利用します。1k(k+1)(k+2)\frac{1}{k(k+1)(k+2)}k(k+1)(k+2)1を次のように分解します。1k(k+1)(k+2)=Ak+Bk+1+Ck+2\frac{1}{k(k+1)(k+2)} = \frac{A}{k} + \frac{B}{k+1} + \frac{C}{k+2}k(k+1)(k+2)1=kA+k+1B+k+2C両辺にk(k+1)(k+2)k(k+1)(k+2)k(k+1)(k+2)を掛けると、1=A(k+1)(k+2)+B(k)(k+2)+C(k)(k+1)1 = A(k+1)(k+2) + B(k)(k+2) + C(k)(k+1)1=A(k+1)(k+2)+B(k)(k+2)+C(k)(k+1)k=0k = 0k=0のとき、1=A(1)(2) ⟹ A=121 = A(1)(2) \implies A = \frac{1}{2}1=A(1)(2)⟹A=21k=−1k = -1k=−1のとき、1=B(−1)(1) ⟹ B=−11 = B(-1)(1) \implies B = -11=B(−1)(1)⟹B=−1k=−2k = -2k=−2のとき、1=C(−2)(−1) ⟹ C=121 = C(-2)(-1) \implies C = \frac{1}{2}1=C(−2)(−1)⟹C=21したがって、1k(k+1)(k+2)=12k−1k+1+12(k+2)\frac{1}{k(k+1)(k+2)} = \frac{1}{2k} - \frac{1}{k+1} + \frac{1}{2(k+2)}k(k+1)(k+2)1=2k1−k+11+2(k+2)1=12(1k−2k+1+1k+2)= \frac{1}{2} (\frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2})=21(k1−k+12+k+21)=12[(1k−1k+1)−(1k+1−1k+2)]= \frac{1}{2} [(\frac{1}{k} - \frac{1}{k+1}) - (\frac{1}{k+1} - \frac{1}{k+2})]=21[(k1−k+11)−(k+11−k+21)]したがって、∑k=1n1k(k+1)(k+2)=12∑k=1n(1k−2k+1+1k+2)\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \frac{1}{2} \sum_{k=1}^{n} (\frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2})∑k=1nk(k+1)(k+2)1=21∑k=1n(k1−k+12+k+21)=12∑k=1n[(1k−1k+1)−(1k+1−1k+2)]= \frac{1}{2} \sum_{k=1}^{n} [(\frac{1}{k} - \frac{1}{k+1}) - (\frac{1}{k+1} - \frac{1}{k+2})]=21∑k=1n[(k1−k+11)−(k+11−k+21)]=12[(11−12)−(12−13)+(12−13)−(13−14)+...+(1n−1n+1)−(1n+1−1n+2)]= \frac{1}{2} [(\frac{1}{1} - \frac{1}{2}) - (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{2} - \frac{1}{3}) - (\frac{1}{3} - \frac{1}{4}) + ... + (\frac{1}{n} - \frac{1}{n+1}) - (\frac{1}{n+1} - \frac{1}{n+2})]=21[(11−21)−(21−31)+(21−31)−(31−41)+...+(n1−n+11)−(n+11−n+21)]=12[(11−12)+(12−13)+...+(1n−1n+1)−(12−13)−(13−14)−...−(1n+1−1n+2)]= \frac{1}{2} [(\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + ... + (\frac{1}{n} - \frac{1}{n+1}) - (\frac{1}{2} - \frac{1}{3}) - (\frac{1}{3} - \frac{1}{4}) - ... - (\frac{1}{n+1} - \frac{1}{n+2})]=21[(11−21)+(21−31)+...+(n1−n+11)−(21−31)−(31−41)−...−(n+11−n+21)]=12[∑k=1n(1k−1k+1)−∑k=1n(1k+1−1k+2)]= \frac{1}{2} [ \sum_{k=1}^{n} (\frac{1}{k} - \frac{1}{k+1}) - \sum_{k=1}^{n} (\frac{1}{k+1} - \frac{1}{k+2}) ]=21[∑k=1n(k1−k+11)−∑k=1n(k+11−k+21)]=12[(1−1n+1)−(12−1n+2)]= \frac{1}{2} [ (1 - \frac{1}{n+1}) - (\frac{1}{2} - \frac{1}{n+2}) ]=21[(1−n+11)−(21−n+21)]=12[1−1n+1−12+1n+2]= \frac{1}{2} [1 - \frac{1}{n+1} - \frac{1}{2} + \frac{1}{n+2}]=21[1−n+11−21+n+21]=12[12−1n+1+1n+2]= \frac{1}{2} [\frac{1}{2} - \frac{1}{n+1} + \frac{1}{n+2}]=21[21−n+11+n+21]=12[(n+1)(n+2)−2(n+2)+2(n+1)2(n+1)(n+2)]= \frac{1}{2} [\frac{(n+1)(n+2) - 2(n+2) + 2(n+1)}{2(n+1)(n+2)}]=21[2(n+1)(n+2)(n+1)(n+2)−2(n+2)+2(n+1)]=12[n2+3n+2−2n−4+2n+22(n+1)(n+2)]= \frac{1}{2} [\frac{n^2 + 3n + 2 - 2n - 4 + 2n + 2}{2(n+1)(n+2)}]=21[2(n+1)(n+2)n2+3n+2−2n−4+2n+2]=12[n2+3n2(n+1)(n+2)]= \frac{1}{2} [\frac{n^2 + 3n}{2(n+1)(n+2)}]=21[2(n+1)(n+2)n2+3n]=n(n+3)4(n+1)(n+2)= \frac{n(n+3)}{4(n+1)(n+2)}=4(n+1)(n+2)n(n+3)3. 最終的な答えn(n+3)4(n+1)(n+2)\frac{n(n+3)}{4(n+1)(n+2)}4(n+1)(n+2)n(n+3)