$a$と$b$を正の定数とする。等差数列 $a_n = a + (n-1)b$ ($n \ge 1$)について、以下の和を求めよ。 (1) $\sum_{k=1}^{n} \frac{1}{a_k a_{k+1}}$ (2) $\sum_{k=1}^{n} \frac{1}{a_k a_{k+1} a_{k+2}}$ (3) $\sum_{k=1}^{n} \frac{k}{a_k a_{k+1} a_{k+2}}$

代数学数列等差数列シグマ部分分数分解
2025/3/25
はい、承知いたしました。問題を解いていきます。

1. 問題の内容

aabbを正の定数とする。等差数列 an=a+(n1)ba_n = a + (n-1)b (n1n \ge 1)について、以下の和を求めよ。
(1) k=1n1akak+1\sum_{k=1}^{n} \frac{1}{a_k a_{k+1}}
(2) k=1n1akak+1ak+2\sum_{k=1}^{n} \frac{1}{a_k a_{k+1} a_{k+2}}
(3) k=1nkakak+1ak+2\sum_{k=1}^{n} \frac{k}{a_k a_{k+1} a_{k+2}}

2. 解き方の手順

(1) k=1n1akak+1\sum_{k=1}^{n} \frac{1}{a_k a_{k+1}}
ak+1ak=(a+kb)(a+(k1)b)=ba_{k+1} - a_k = (a + kb) - (a + (k-1)b) = b であるから、
1akak+1=1b(1ak1ak+1)\frac{1}{a_k a_{k+1}} = \frac{1}{b} (\frac{1}{a_k} - \frac{1}{a_{k+1}}) と変形できる。
したがって、
k=1n1akak+1=1bk=1n(1ak1ak+1)\sum_{k=1}^{n} \frac{1}{a_k a_{k+1}} = \frac{1}{b} \sum_{k=1}^{n} (\frac{1}{a_k} - \frac{1}{a_{k+1}})
=1b(1a11an+1)=\frac{1}{b} (\frac{1}{a_1} - \frac{1}{a_{n+1}})
=1b(1a1a+nb)=\frac{1}{b} (\frac{1}{a} - \frac{1}{a+nb})
=1ba+nbaa(a+nb)=\frac{1}{b} \frac{a+nb-a}{a(a+nb)}
=nbba(a+nb)=\frac{nb}{b a(a+nb)}
=na(a+nb)=\frac{n}{a(a+nb)}
(2) k=1n1akak+1ak+2\sum_{k=1}^{n} \frac{1}{a_k a_{k+1} a_{k+2}}
ak+2ak=(a+(k+1)b)(a+(k1)b)=2ba_{k+2} - a_k = (a+(k+1)b) - (a+(k-1)b) = 2b であるから、
1akak+1ak+2=12bak+1(1ak1ak+2)\frac{1}{a_k a_{k+1} a_{k+2}} = \frac{1}{2b a_{k+1}}(\frac{1}{a_k} - \frac{1}{a_{k+2}})
1akak+1ak+2=12b(1akak+11ak+1ak+2)\frac{1}{a_k a_{k+1} a_{k+2}} = \frac{1}{2b}(\frac{1}{a_k a_{k+1}} - \frac{1}{a_{k+1} a_{k+2}})
k=1n1akak+1ak+2=12bk=1n(1akak+11ak+1ak+2)\sum_{k=1}^{n} \frac{1}{a_k a_{k+1} a_{k+2}} = \frac{1}{2b} \sum_{k=1}^{n} (\frac{1}{a_k a_{k+1}} - \frac{1}{a_{k+1} a_{k+2}})
=12b(1a1a21an+1an+2)=\frac{1}{2b}(\frac{1}{a_1 a_2} - \frac{1}{a_{n+1} a_{n+2}})
=12b(1a(a+b)1(a+nb)(a+(n+1)b))=\frac{1}{2b}(\frac{1}{a(a+b)} - \frac{1}{(a+nb)(a+(n+1)b)})
=12b(a+nb)(a+(n+1)b)a(a+b)a(a+b)(a+nb)(a+(n+1)b)=\frac{1}{2b} \frac{(a+nb)(a+(n+1)b) - a(a+b)}{a(a+b)(a+nb)(a+(n+1)b)}
=12ba2+(2n+1)ab+n(n+1)b2a2aba(a+b)(a+nb)(a+(n+1)b)=\frac{1}{2b} \frac{a^2 + (2n+1)ab+n(n+1)b^2 - a^2 - ab}{a(a+b)(a+nb)(a+(n+1)b)}
=12b2nab+n(n+1)b2a(a+b)(a+nb)(a+(n+1)b)=\frac{1}{2b} \frac{2nab + n(n+1)b^2}{a(a+b)(a+nb)(a+(n+1)b)}
=n(2a+(n+1)b)2a(a+b)(a+nb)(a+(n+1)b)=\frac{n(2a+(n+1)b)}{2a(a+b)(a+nb)(a+(n+1)b)}
(3) k=1nkakak+1ak+2\sum_{k=1}^{n} \frac{k}{a_k a_{k+1} a_{k+2}}
ak+2ak=2ba_{k+2} - a_k = 2b であるから、
k=ak+2ak2ba+bk = \frac{a_{k+2} - a_k}{2b} - a + b
k=1nkakak+1ak+2=k=1n(aka)bakak+1ak+2\sum_{k=1}^{n} \frac{k}{a_k a_{k+1} a_{k+2}} = \sum_{k=1}^{n} \frac{(a_k-a)}{b a_k a_{k+1} a_{k+2}}
kakak+1ak+2=A(1akak+11ak+1ak+2)\frac{k}{a_k a_{k+1} a_{k+2}} = A(\frac{1}{a_k a_{k+1}} - \frac{1}{a_{k+1} a_{k+2}})

3. 最終的な答え

(1) k=1n1akak+1=na(a+nb)\sum_{k=1}^{n} \frac{1}{a_k a_{k+1}} = \frac{n}{a(a+nb)}
(2) k=1n1akak+1ak+2=n(2a+(n+1)b)2a(a+b)(a+nb)(a+(n+1)b)\sum_{k=1}^{n} \frac{1}{a_k a_{k+1} a_{k+2}} = \frac{n(2a+(n+1)b)}{2a(a+b)(a+nb)(a+(n+1)b)}
(3) k=1nkakak+1ak+2\sum_{k=1}^{n} \frac{k}{a_k a_{k+1} a_{k+2}} 答えを求めることができませんでした。