室温における銅の抵抗率 $\rho = 1.7 \times 10^{-8} [\Omega \cdot \text{m}]$、電子密度 $n = 8.5 \times 10^{28} [\text{m}^{-3}]$ であるとき、電子の移動度 $\mu [\text{cm}^2/\text{Vs}]$、緩和時間 $\tau [\text{s}]$、および電界 $1.0 [\text{V/cm}]$ が印加された場合の電子のドリフト速度 $v_d [\text{m/s}]$ を求める。電子の有効質量は $m_e^* = 9.1 \times 10^{-31} [\text{kg}]$ とする。
2025/5/27
1. 問題の内容
室温における銅の抵抗率 、電子密度 であるとき、電子の移動度 、緩和時間 、および電界 が印加された場合の電子のドリフト速度 を求める。電子の有効質量は とする。
2. 解き方の手順
(1) 電子の移動度 を求める。
抵抗率 は、電荷素量 、電子密度 、電子の移動度 を用いて、以下のように表される。
この式から、電子の移動度 は以下のように求められる。
ここで、、、 を代入すると、
問題では、 単位で移動度を求められているため、単位を変換する。
なので、 である。
(2) 緩和時間 を求める。
電子の移動度 は、電荷素量 、緩和時間 、電子の有効質量 を用いて、以下のように表される。
この式から、緩和時間 は以下のように求められる。
ここで、、、 を代入すると、
(3) ドリフト速度 を求める。
ドリフト速度 は、電子の移動度 と電界 を用いて、以下のように表される。
ここで、、 を代入すると、
3. 最終的な答え
電子の移動度
緩和時間
電子のドリフト速度