画像に表示された問題は、順列の公式を用いて $Q1 \cdot _8P_2$ を計算し、結果を求める問題です。

離散数学順列組み合わせ数学場合の数計算
2025/5/28

1. 問題の内容

画像に表示された問題は、順列の公式を用いて Q18P2Q1 \cdot _8P_2 を計算し、結果を求める問題です。

2. 解き方の手順

順列 nPr_nP_r の公式は、
nPr=n!(nr)!_nP_r = \frac{n!}{(n-r)!}
で表されます。
この問題では n=8n = 8r=2r = 2 なので、
8P2=8!(82)!=8!6!_8P_2 = \frac{8!}{(8-2)!} = \frac{8!}{6!}
となります。
8!=8×7×6×5×4×3×2×18! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 であり、6!=6×5×4×3×2×16! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 なので、
8P2=8×7×6!6!=8×7=56_8P_2 = \frac{8 \times 7 \times 6!}{6!} = 8 \times 7 = 56
となります。
したがって、Q18P2=156=56Q1 \cdot _8P_2 = 1 \cdot 56 = 56

3. 最終的な答え

56

「離散数学」の関連問題

6枚のDVDを見る順番を考える問題です。 (1) 6枚のDVDを順番にすべて見るときの見る順番の総数を求めます。 (2) 1番最初に見るDVDと2番目に見るDVDを決定するときの決定方法の総数を求めま...

順列場合の数組み合わせ階乗
2025/7/27

問題4は、順列 $nPr$ の定義、公式、階乗 $n!$ の定義について答える問題です。問題5は、$nPr$ や $n!$ の値を計算する問題です。

順列組み合わせ階乗nPrn!
2025/7/27

格子状の道路網において、A地点からB地点へ最短経路で行く場合の数を求める問題です。以下の4つの場合について、経路数を求めます。 (1) Dを通る経路 (2) Cを通らずDを通る経路 (3) CまたはD...

組み合わせ最短経路格子状道路網場合の数
2025/7/27

A地点からB地点まで最短経路で行く場合の数を、以下の4つの条件下でそれぞれ求めます。 (1) Dを通る場合 (2) Cを通らずDを通る場合 (3) CまたはDを通る場合 (4) C, Dともに通らない...

組み合わせ最短経路順列
2025/7/27

図に示す経路において、出発点から出発し、全ての線を少なくとも一度は通ってゴールする場合の最短距離を求める問題です。

グラフ理論オイラー路最短距離
2025/7/27

全体集合 $U$ を自然数全体の集合とし、その部分集合 $A, B, C, D, E$ を次のように定める。 $A = \{x | x \text{は2の倍数}\}$ $B = \{x | x \te...

集合補集合共通部分和集合必要条件と十分条件
2025/7/27

問題は、与えられた図形の全ての線を通る最短ルートとその距離を求めることです。線の重複は許容されます。図形はいくつかの長方形が組み合わさったもので、出発点と各辺の長さが示されています。

グラフ理論オイラー路中国人郵便配達問題最短経路次数
2025/7/27

OKAYAMAの7文字を1列に並べる場合の文字列について、以下の4つの問いに答える問題です。 (1) 文字列の総数 (2) O, K, Y, M がこの順に並ぶ文字列の数 (3) AとAが隣り合わない...

順列組み合わせ文字列
2025/7/27

OKAYAMAの7文字を並び替える問題です。 (1) 並び替えの総数 (2) O, K, Y, M がこの順に並ぶ並び替えの数 (3) A と A が隣り合わない並び替えの数 (4) O と K がこ...

順列組み合わせ場合の数重複順列
2025/7/27

9人の人を以下の方法でグループに分ける場合の数を求める問題です。 (1) 3人ずつ、A, B, C の3組に分ける。 (2) 3人ずつ3組に分ける。

組み合わせ場合の数順列分割
2025/7/27