$\pi < \alpha < \frac{3}{2}\pi$, $\cos \alpha = -\frac{3}{4}$のとき、$\cos 2\alpha$, $\sin 2\alpha$, $\tan 2\alpha$をそれぞれ求める問題です。代数学三角関数加法定理倍角の公式三角関数の相互関係2025/5/281. 問題の内容π<α<32π\pi < \alpha < \frac{3}{2}\piπ<α<23π, cosα=−34\cos \alpha = -\frac{3}{4}cosα=−43のとき、cos2α\cos 2\alphacos2α, sin2α\sin 2\alphasin2α, tan2α\tan 2\alphatan2αをそれぞれ求める問題です。2. 解き方の手順まず、cos2α\cos 2\alphacos2αを求めます。cos2α\cos 2\alphacos2αの公式は、cos2α=2cos2α−1\cos 2\alpha = 2\cos^2 \alpha - 1cos2α=2cos2α−1です。cosα=−34\cos \alpha = -\frac{3}{4}cosα=−43を代入すると、cos2α=2(−34)2−1=2(916)−1=1816−1=98−1=18\cos 2\alpha = 2\left(-\frac{3}{4}\right)^2 - 1 = 2\left(\frac{9}{16}\right) - 1 = \frac{18}{16} - 1 = \frac{9}{8} - 1 = \frac{1}{8}cos2α=2(−43)2−1=2(169)−1=1618−1=89−1=81次に、sin2α\sin 2\alphasin2αを求めます。sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1sin2α+cos2α=1より、sin2α=1−cos2α=1−(−34)2=1−916=716\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(-\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{7}{16}sin2α=1−cos2α=1−(−43)2=1−169=167π<α<32π\pi < \alpha < \frac{3}{2}\piπ<α<23πなので、sinα<0\sin \alpha < 0sinα<0。よって、sinα=−716=−74\sin \alpha = -\sqrt{\frac{7}{16}} = -\frac{\sqrt{7}}{4}sinα=−167=−47sin2α=2sinαcosα=2(−74)(−34)=6716=378\sin 2\alpha = 2\sin \alpha \cos \alpha = 2\left(-\frac{\sqrt{7}}{4}\right)\left(-\frac{3}{4}\right) = \frac{6\sqrt{7}}{16} = \frac{3\sqrt{7}}{8}sin2α=2sinαcosα=2(−47)(−43)=1667=837最後に、tan2α\tan 2\alphatan2αを求めます。tan2α=sin2αcos2α=37818=37\tan 2\alpha = \frac{\sin 2\alpha}{\cos 2\alpha} = \frac{\frac{3\sqrt{7}}{8}}{\frac{1}{8}} = 3\sqrt{7}tan2α=cos2αsin2α=81837=373. 最終的な答えcos2α=18\cos 2\alpha = \frac{1}{8}cos2α=81sin2α=378\sin 2\alpha = \frac{3\sqrt{7}}{8}sin2α=837tan2α=37\tan 2\alpha = 3\sqrt{7}tan2α=37