以下の定積分を計算する問題です。 $\int_{1}^{3} (7x^2 - 7x + 7) dx - \int_{5}^{3} (7x^2 - 7x + 7) dx - \int_{1}^{5} (7x^2 - 7x + 7) dx$解析学定積分積分計算2025/3/261. 問題の内容以下の定積分を計算する問題です。∫13(7x2−7x+7)dx−∫53(7x2−7x+7)dx−∫15(7x2−7x+7)dx\int_{1}^{3} (7x^2 - 7x + 7) dx - \int_{5}^{3} (7x^2 - 7x + 7) dx - \int_{1}^{5} (7x^2 - 7x + 7) dx∫13(7x2−7x+7)dx−∫53(7x2−7x+7)dx−∫15(7x2−7x+7)dx2. 解き方の手順まず、積分を一つにまとめます。∫13(7x2−7x+7)dx−∫53(7x2−7x+7)dx−∫15(7x2−7x+7)dx\int_{1}^{3} (7x^2 - 7x + 7) dx - \int_{5}^{3} (7x^2 - 7x + 7) dx - \int_{1}^{5} (7x^2 - 7x + 7) dx∫13(7x2−7x+7)dx−∫53(7x2−7x+7)dx−∫15(7x2−7x+7)dx=∫13(7x2−7x+7)dx+∫35(7x2−7x+7)dx−∫15(7x2−7x+7)dx= \int_{1}^{3} (7x^2 - 7x + 7) dx + \int_{3}^{5} (7x^2 - 7x + 7) dx - \int_{1}^{5} (7x^2 - 7x + 7) dx=∫13(7x2−7x+7)dx+∫35(7x2−7x+7)dx−∫15(7x2−7x+7)dx=∫15(7x2−7x+7)dx−∫15(7x2−7x+7)dx= \int_{1}^{5} (7x^2 - 7x + 7) dx - \int_{1}^{5} (7x^2 - 7x + 7) dx=∫15(7x2−7x+7)dx−∫15(7x2−7x+7)dx=0= 0=0または、積分を別々に計算しても良いです。∫13(7x2−7x+7)dx=[7x33−7x22+7x]13=(73(33−1)−72(32−1)+7(3−1))=73(26)−72(8)+7(2)=1823−28+14=1823−14=182−423=1403\int_{1}^{3} (7x^2 - 7x + 7) dx = [7 \frac{x^3}{3} - 7 \frac{x^2}{2} + 7x ]_1^3 = (\frac{7}{3} (3^3 - 1) - \frac{7}{2}(3^2 - 1) + 7(3-1)) = \frac{7}{3} (26) - \frac{7}{2} (8) + 7(2) = \frac{182}{3} - 28 + 14 = \frac{182}{3} - 14 = \frac{182-42}{3} = \frac{140}{3}∫13(7x2−7x+7)dx=[73x3−72x2+7x]13=(37(33−1)−27(32−1)+7(3−1))=37(26)−27(8)+7(2)=3182−28+14=3182−14=3182−42=3140∫53(7x2−7x+7)dx=[7x33−7x22+7x]53=(73(33−53)−72(32−52)+7(3−5))=73(27−125)−72(9−25)+7(−2)=73(−98)−72(−16)−14=−6863+56−14=−6863+42=−686+1263=−5603\int_{5}^{3} (7x^2 - 7x + 7) dx = [7 \frac{x^3}{3} - 7 \frac{x^2}{2} + 7x ]_5^3 = (\frac{7}{3} (3^3 - 5^3) - \frac{7}{2}(3^2 - 5^2) + 7(3-5)) = \frac{7}{3} (27-125) - \frac{7}{2}(9-25) + 7(-2) = \frac{7}{3}(-98) - \frac{7}{2}(-16) -14 = -\frac{686}{3} + 56 -14 = -\frac{686}{3} + 42 = \frac{-686+126}{3} = \frac{-560}{3}∫53(7x2−7x+7)dx=[73x3−72x2+7x]53=(37(33−53)−27(32−52)+7(3−5))=37(27−125)−27(9−25)+7(−2)=37(−98)−27(−16)−14=−3686+56−14=−3686+42=3−686+126=3−560∫15(7x2−7x+7)dx=[7x33−7x22+7x]15=(73(53−1)−72(52−1)+7(5−1))=73(124)−72(24)+7(4)=8683−84+28=8683−56=868−1683=7003\int_{1}^{5} (7x^2 - 7x + 7) dx = [7 \frac{x^3}{3} - 7 \frac{x^2}{2} + 7x ]_1^5 = (\frac{7}{3} (5^3 - 1) - \frac{7}{2}(5^2 - 1) + 7(5-1)) = \frac{7}{3} (124) - \frac{7}{2} (24) + 7(4) = \frac{868}{3} - 84 + 28 = \frac{868}{3} - 56 = \frac{868 - 168}{3} = \frac{700}{3}∫15(7x2−7x+7)dx=[73x3−72x2+7x]15=(37(53−1)−27(52−1)+7(5−1))=37(124)−27(24)+7(4)=3868−84+28=3868−56=3868−168=37001403−(−5603)−7003=1403+5603−7003=7003−7003=0\frac{140}{3} - (-\frac{560}{3}) - \frac{700}{3} = \frac{140}{3} + \frac{560}{3} - \frac{700}{3} = \frac{700}{3} - \frac{700}{3} = 03140−(−3560)−3700=3140+3560−3700=3700−3700=03. 最終的な答え0