関数 $y = 5x^2 - 2x + 5$ のグラフ上の点 $(-1, 12)$ における接線の方程式を求めます。

解析学微分接線導関数微分方程式
2025/3/26

1. 問題の内容

関数 y=5x22x+5y = 5x^2 - 2x + 5 のグラフ上の点 (1,12)(-1, 12) における接線の方程式を求めます。

2. 解き方の手順

まず、与えられた関数を微分して、導関数を求めます。導関数は接線の傾きを表します。
y=5x22x+5y = 5x^2 - 2x + 5 を微分すると、
y=10x2y' = 10x - 2
次に、点 (1,12)(-1, 12) における接線の傾きを求めます。これは、導関数に x=1x = -1 を代入することで得られます。
y(1)=10(1)2=102=12y'(-1) = 10(-1) - 2 = -10 - 2 = -12
したがって、点 (1,12)(-1, 12) における接線の傾きは 12-12 です。
次に、点傾斜形を用いて接線の方程式を求めます。点傾斜形は、傾きが mm で点 (x1,y1)(x_1, y_1) を通る直線の方程式を表すもので、次のように表されます。
yy1=m(xx1)y - y_1 = m(x - x_1)
この問題では、m=12m = -12x1=1x_1 = -1y1=12y_1 = 12 なので、接線の方程式は次のようになります。
y12=12(x(1))y - 12 = -12(x - (-1))
y12=12(x+1)y - 12 = -12(x + 1)
y12=12x12y - 12 = -12x - 12
y=12xy = -12x

3. 最終的な答え

y=12xy = -12x

「解析学」の関連問題

$x \in (-1, 1)$ で定義された関数 $f_1(x) = \sqrt{1 - x^2}$ について、以下の導関数を求める問題です。 (a) $f_1'(x)$ (b) $f_1''(x)$...

導関数微分合成関数の微分法商の微分法
2025/7/1

与えられた12個の頂点を持つ多角形の内部および周を領域Dとするとき、二重積分 $\iint_D y^2 dxdy$ を計算する。ただし、$\alpha$ は正の実数である。

二重積分多角形積分領域対称性
2025/7/1

$\cos x$ の有限マクローリン展開が以下の式で表せることを示す問題です。 $1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4 + \dots + \frac{(-1)^n...

マクローリン展開テイラー展開剰余項微分三角関数
2025/7/1

問題1:$\cos x$ の有限マクローリン展開が次の式で表せることを示す問題です。 $1 - \frac{1}{2}x^2 + \frac{1}{4!}x^4 - \dots + \frac{(-1...

マクローリン展開テイラー展開級数展開指数関数三角関数対数関数
2025/7/1

与えられた4つの関数を微分する問題です。 (1) $y = \sin{x}$ (2) $y = \sin{3x}$ (3) $y = \cos{4x}$ (4) $y = 2\sin{(5x - 7)...

微分三角関数合成関数
2025/7/1

## 1. 問題の内容

積分置換積分不定積分
2025/7/1

与えられた関数 $ f(x, y) = \begin{cases} |x|^\alpha |y|^\beta & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \...

多変数関数方向微分全微分可能性極限
2025/7/1

問題1は、与えられた関数を微分する問題です。(1)と(2)の二つの関数があります。問題2は、効用関数 $U = 2x^3$ が与えられたとき、(1) $x=1$ のとき、(2) $x=5$ のときの限...

微分関数限界効用
2025/7/1

与えられた4つの定積分の値を求める問題です。 (1) $\int_{0}^{\infty} xe^{-\sqrt{x}}dx$ (2) $\int_{0}^{\infty} x^{n-\frac{1}...

定積分ガンマ関数ベータ関数置換積分
2025/7/1

以下の定積分を計算します。 $\int_{0}^{2} \frac{x^3}{\sqrt{2-x}} dx$ ヒントとして、$x = 2t$ とおくことが示されています。

定積分置換積分ベータ関数ガンマ関数
2025/7/1