$x = \frac{\sqrt{5}+2}{\sqrt{5}-2}$、 $y = \frac{\sqrt{5}-2}{\sqrt{5}+2}$ のとき、$x^2y + xy^2$ の値を求めよ。

代数学式の計算有理化因数分解平方根
2025/5/29

1. 問題の内容

x=5+252x = \frac{\sqrt{5}+2}{\sqrt{5}-2}y=525+2y = \frac{\sqrt{5}-2}{\sqrt{5}+2} のとき、x2y+xy2x^2y + xy^2 の値を求めよ。

2. 解き方の手順

まず、xxyyをそれぞれ有理化します。
x=5+252=(5+2)(5+2)(52)(5+2)=5+45+454=9+45x = \frac{\sqrt{5}+2}{\sqrt{5}-2} = \frac{(\sqrt{5}+2)(\sqrt{5}+2)}{(\sqrt{5}-2)(\sqrt{5}+2)} = \frac{5 + 4\sqrt{5} + 4}{5 - 4} = 9 + 4\sqrt{5}
y=525+2=(52)(52)(5+2)(52)=545+454=945y = \frac{\sqrt{5}-2}{\sqrt{5}+2} = \frac{(\sqrt{5}-2)(\sqrt{5}-2)}{(\sqrt{5}+2)(\sqrt{5}-2)} = \frac{5 - 4\sqrt{5} + 4}{5 - 4} = 9 - 4\sqrt{5}
次に、求めたい式 x2y+xy2x^2y + xy^2 を因数分解します。
x2y+xy2=xy(x+y)x^2y + xy^2 = xy(x+y)
x+yx+yxyxyをそれぞれ計算します。
x+y=(9+45)+(945)=18x+y = (9 + 4\sqrt{5}) + (9 - 4\sqrt{5}) = 18
xy=(9+45)(945)=8116×5=8180=1xy = (9 + 4\sqrt{5})(9 - 4\sqrt{5}) = 81 - 16 \times 5 = 81 - 80 = 1
したがって、
x2y+xy2=xy(x+y)=1×18=18x^2y + xy^2 = xy(x+y) = 1 \times 18 = 18

3. 最終的な答え

18

「代数学」の関連問題

与えられた $n$ 次正方行列の行列式を計算し、その結果が $1 + x^2 + x^4 + \dots + x^{2n}$ であることを示します。 行列の要素は、$1+x^2$ が対角成分、$x$ ...

行列式数学的帰納法正方行列
2025/5/30

与えられた行列式の値を計算し、その結果が指定された式と等しいことを示す問題です。 (1) 行列式 $\begin{vmatrix} 1 & 1 & 1 & 1 \\ x & a & a & a \\ ...

行列式行列基本変形
2025/5/30

(1) 次の等式を示す問題です。 $\begin{vmatrix} 1 & 1 & 1 & 1 \\ x & a & a & a \\ x & y & b & b \\ x & y & z & c \...

行列式行列
2025/5/30

与えられた問題は、$\sum_{k=1}^{n} (k^2 - 4k)$ を計算することです。

数列シグマ公式計算
2025/5/30

与えられたグラフに対応する関数 $y = f(x)$ を求める問題です。グラフは (1) 直線、(2) 2次関数、(3) 3次関数の3種類があります。

関数グラフ直線二次関数三次関数方程式
2025/5/30

問題3の(1)について、グラフから直線の関数 $y=f(x)$ を求める問題です。グラフは点(0, 6)と点(4, 0)を通る直線です。

一次関数グラフ傾きy切片直線の式
2025/5/30

与えられた行列式を計算する問題です。行列式は以下の通りです。 $ \begin{vmatrix} 2^3 & 1 & 2^2 & 2 \\ -3^3 & 1 & 3^2 & -3 \\ 7^3 & 1...

行列式線形代数
2025/5/30

2次関数 $y = -x^2 + 6x - 5$ について、以下の問いに答えます。 (1) 平方完成 (2) $x$軸と$y$軸との交点の座標 (3) 頂点の座標 (4) $y=x^2$ をどのように...

二次関数平方完成グラフ軸との交点頂点
2025/5/30

与えられた数列の和を求める問題です。数列は $3 \cdot 2 + 6 \cdot 3 + 9 \cdot 4 + \dots + 3n(n+1)$ で表されます。

数列シグマ等差数列公式和の公式
2025/5/30

必要条件、十分条件の問題です。 (1) 四角形ABCDが長方形であることは、四角形ABCDが平行四辺形であるための条件は何か? (2) $a>b$ は、$2a+1>2b+1$ であるための条件は何か?...

条件必要条件十分条件命題不等式整数の性質
2025/5/30