$x = \frac{\sqrt{5}+2}{\sqrt{5}-2}$、 $y = \frac{\sqrt{5}-2}{\sqrt{5}+2}$ のとき、$x^2y + xy^2$ の値を求めよ。代数学式の計算有理化因数分解平方根2025/5/291. 問題の内容x=5+25−2x = \frac{\sqrt{5}+2}{\sqrt{5}-2}x=5−25+2、 y=5−25+2y = \frac{\sqrt{5}-2}{\sqrt{5}+2}y=5+25−2 のとき、x2y+xy2x^2y + xy^2x2y+xy2 の値を求めよ。2. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。x=5+25−2=(5+2)(5+2)(5−2)(5+2)=5+45+45−4=9+45x = \frac{\sqrt{5}+2}{\sqrt{5}-2} = \frac{(\sqrt{5}+2)(\sqrt{5}+2)}{(\sqrt{5}-2)(\sqrt{5}+2)} = \frac{5 + 4\sqrt{5} + 4}{5 - 4} = 9 + 4\sqrt{5}x=5−25+2=(5−2)(5+2)(5+2)(5+2)=5−45+45+4=9+45y=5−25+2=(5−2)(5−2)(5+2)(5−2)=5−45+45−4=9−45y = \frac{\sqrt{5}-2}{\sqrt{5}+2} = \frac{(\sqrt{5}-2)(\sqrt{5}-2)}{(\sqrt{5}+2)(\sqrt{5}-2)} = \frac{5 - 4\sqrt{5} + 4}{5 - 4} = 9 - 4\sqrt{5}y=5+25−2=(5+2)(5−2)(5−2)(5−2)=5−45−45+4=9−45次に、求めたい式 x2y+xy2x^2y + xy^2x2y+xy2 を因数分解します。x2y+xy2=xy(x+y)x^2y + xy^2 = xy(x+y)x2y+xy2=xy(x+y)x+yx+yx+yとxyxyxyをそれぞれ計算します。x+y=(9+45)+(9−45)=18x+y = (9 + 4\sqrt{5}) + (9 - 4\sqrt{5}) = 18x+y=(9+45)+(9−45)=18xy=(9+45)(9−45)=81−16×5=81−80=1xy = (9 + 4\sqrt{5})(9 - 4\sqrt{5}) = 81 - 16 \times 5 = 81 - 80 = 1xy=(9+45)(9−45)=81−16×5=81−80=1したがって、x2y+xy2=xy(x+y)=1×18=18x^2y + xy^2 = xy(x+y) = 1 \times 18 = 18x2y+xy2=xy(x+y)=1×18=183. 最終的な答え18