与えられた式 $\frac{2b-c}{9} = d$ を、$b$ について解く問題です。

代数学方程式式の変形文字式の計算
2025/5/29

1. 問題の内容

与えられた式 2bc9=d\frac{2b-c}{9} = d を、bb について解く問題です。

2. 解き方の手順

まず、式の両辺に 9 を掛けます。
2bc9×9=d×9 \frac{2b-c}{9} \times 9 = d \times 9
2bc=9d 2b - c = 9d
次に、cc を右辺に移項します。
2b=9d+c 2b = 9d + c
最後に、両辺を 2 で割ります。
2b2=9d+c2 \frac{2b}{2} = \frac{9d + c}{2}
b=9d+c2 b = \frac{9d + c}{2}

3. 最終的な答え

b=9d+c2b = \frac{9d + c}{2}

「代数学」の関連問題

与えられた行列 $A = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ に対して、核 (Ker A) と像 (Im A) を求める問...

線形代数行列線形空間
2025/5/30

与えられた式 $-xy(y+5) + 3(x+2)y$ を展開し、整理して簡単にしてください。

式の展開多項式整理
2025/5/30

与えられた数式 $x(x+1) - 5(x^2 + 3)$ を簡略化し、最も単純な形で表現すること。

式の簡略化多項式展開同類項
2025/5/30

与えられた式 $3(3x^2 - x + 1) - 4(2x^2 + 4x + 5)$ を簡略化します。

式の展開同類項多項式
2025/5/30

与えられた式 $\frac{x+y}{4} - \frac{2x+y}{3}$ を計算し、最も簡単な形で表す問題です。

分数式の計算同類項
2025/5/30

不等式 $|x - \frac{a}{b}| \le |\frac{b}{a}|$ を解き、さらに不等式 $k \le x \le k+3$ とともに満たす整数 $x$ がちょうど2個存在するような定...

不等式絶対値整数場合分け数直線
2025/5/30

不等式 $|x - \frac{a}{6}| \le \frac{a}{6}$ (①とする)を解き、さらに、不等式①と $k \le x \le k+3$ を同時に満たす整数 $x$ がちょうど2個存...

不等式絶対値整数解数直線
2025/5/30

不等式 $|x - \frac{a}{b}| \le \frac{7}{9}$ を解き、その解と不等式 $k \le x \le k+3$ を同時に満たす整数 $x$ がちょうど2個存在するような定数...

不等式絶対値整数解
2025/5/30

黒板に書かれた数式と図に関する問題です。具体的には、以下の内容について言及されています。 * $det A \neq 0$であることの意味 * 連立一次方程式 $Ax = b$ の解の存在条件...

線形代数行列式連立一次方程式rank線形変換
2025/5/30

与えられた4つの数式について、計算を行い、空欄を埋める問題です。

多項式の計算式の展開文字式の計算
2025/5/30