3次行列式は、以下の公式で計算できます。
$\begin{vmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg)$
(1) 123231312 =1(3⋅2−1⋅1)−2(2⋅2−1⋅3)+3(2⋅1−3⋅3) =1(6−1)−2(4−3)+3(2−9) =5−2−21=−18 (2) 112125138 =1(2⋅8−3⋅5)−1(1⋅8−3⋅2)+1(1⋅5−2⋅2) =(16−15)−(8−6)+(5−4) =1−2+1=0 (3) 0aba0cbc0 =0(0⋅0−c⋅c)−a(a⋅0−c⋅b)+b(a⋅c−0⋅b) =0+abc+abc=2abc (4) acbbaccba =a(a2−bc)−b(ac−b2)+c(c2−ab) =a3−abc−abc+b3+c3−abc =a3+b3+c3−3abc