与えられた対数を含む式を簡単にします。代数学対数対数計算対数の性質2025/5/29はい、承知いたしました。画像にある問題のうち、(1)から(9)までのすべての問題を解いて回答します。1. 問題の内容与えられた対数を含む式を簡単にします。2. 解き方の手順と答え(1) log28+log212−log24\log_2 8 + \log_2 \frac{1}{\sqrt{2}} - \log_2 4log28+log221−log24log28=log223=3\log_2 8 = \log_2 2^3 = 3log28=log223=3log212=log22−12=−12\log_2 \frac{1}{\sqrt{2}} = \log_2 2^{-\frac{1}{2}} = -\frac{1}{2}log221=log22−21=−21log24=log222=2\log_2 4 = \log_2 2^2 = 2log24=log222=2よって、 3−12−2=12=0.53 - \frac{1}{2} - 2 = \frac{1}{2} = 0.53−21−2=21=0.5最終的な答え: 12\frac{1}{2}21(2) log3272−log318+log326\log_3 \frac{27}{\sqrt{2}} - \log_3 18 + \log_3 2\sqrt{6}log3227−log318+log326log3272=log327−log32=3−12log32\log_3 \frac{27}{\sqrt{2}} = \log_3 27 - \log_3 \sqrt{2} = 3 - \frac{1}{2}\log_3 2log3227=log327−log32=3−21log32log318=log3(2⋅32)=log32+2\log_3 18 = \log_3 (2 \cdot 3^2) = \log_3 2 + 2log318=log3(2⋅32)=log32+2log326=log32+log36=log32+12log36=log32+12(log32+log33)=32log32+12\log_3 2\sqrt{6} = \log_3 2 + \log_3 \sqrt{6} = \log_3 2 + \frac{1}{2}\log_3 6 = \log_3 2 + \frac{1}{2}(\log_3 2 + \log_3 3) = \frac{3}{2}\log_3 2 + \frac{1}{2}log326=log32+log36=log32+21log36=log32+21(log32+log33)=23log32+213−12log32−(log32+2)+32log32+12=3−12log32−log32−2+32log32+12=1−12+−2+32log32=323 - \frac{1}{2}\log_3 2 - (\log_3 2 + 2) + \frac{3}{2}\log_3 2 + \frac{1}{2} = 3 - \frac{1}{2}\log_3 2 - \log_3 2 - 2 + \frac{3}{2}\log_3 2 + \frac{1}{2} = 1 - \frac{1}{2} + \frac{-2+3}{2}\log_3 2 = \frac{3}{2}3−21log32−(log32+2)+23log32+21=3−21log32−log32−2+23log32+21=1−21+2−2+3log32=23最終的な答え: 32\frac{3}{2}23(3) 12log23+log428−3log821\frac{1}{2} \log_2 3 + \log_4 28 - 3\log_8 \sqrt{21}21log23+log428−3log82112log23=log23\frac{1}{2}\log_2 3 = \log_2 \sqrt{3}21log23=log23log428=log228log24=log2(4⋅7)2=log24+log272=2+log272=1+12log27\log_4 28 = \frac{\log_2 28}{\log_2 4} = \frac{\log_2 (4\cdot 7)}{2} = \frac{\log_2 4 + \log_2 7}{2} = \frac{2+\log_2 7}{2} = 1 + \frac{1}{2}\log_2 7log428=log24log228=2log2(4⋅7)=2log24+log27=22+log27=1+21log273log821=3log221log28=312log2213=12log221=12log2(3⋅7)=12(log23+log27)3\log_8 \sqrt{21} = 3 \frac{\log_2 \sqrt{21}}{\log_2 8} = 3\frac{\frac{1}{2}\log_2 21}{3} = \frac{1}{2}\log_2 21 = \frac{1}{2}\log_2 (3\cdot 7) = \frac{1}{2}(\log_2 3 + \log_2 7)3log821=3log28log221=3321log221=21log221=21log2(3⋅7)=21(log23+log27)log23+1+12log27−12log23−12log27=12log23+1+12log27−12log23−12log27=1\log_2 \sqrt{3} + 1 + \frac{1}{2}\log_2 7 - \frac{1}{2}\log_2 3 - \frac{1}{2}\log_2 7 = \frac{1}{2}\log_2 3 + 1 + \frac{1}{2}\log_2 7 - \frac{1}{2}\log_2 3 - \frac{1}{2}\log_2 7 = 1log23+1+21log27−21log23−21log27=21log23+1+21log27−21log23−21log27=1最終的な答え: 111(4) log354−13log3162−13log34\log_3 54 - \frac{1}{3}\log_3 162 - \frac{1}{3}\log_3 4log354−31log3162−31log34log354=log3(2⋅33)=log32+3\log_3 54 = \log_3(2 \cdot 3^3) = \log_3 2 + 3log354=log3(2⋅33)=log32+313log3162=13log3(2⋅34)=13(log32+4)=13log32+43\frac{1}{3}\log_3 162 = \frac{1}{3}\log_3 (2 \cdot 3^4) = \frac{1}{3}(\log_3 2 + 4) = \frac{1}{3}\log_3 2 + \frac{4}{3}31log3162=31log3(2⋅34)=31(log32+4)=31log32+3413log34=13log322=23log32\frac{1}{3}\log_3 4 = \frac{1}{3}\log_3 2^2 = \frac{2}{3}\log_3 231log34=31log322=32log32log32+3−13log32−43−23log32=3−43+log32−13log32−23log32=53+(1−13−23)log32=53\log_3 2 + 3 - \frac{1}{3}\log_3 2 - \frac{4}{3} - \frac{2}{3}\log_3 2 = 3 - \frac{4}{3} + \log_3 2 - \frac{1}{3}\log_3 2 - \frac{2}{3}\log_3 2 = \frac{5}{3} + (1 - \frac{1}{3} - \frac{2}{3})\log_3 2 = \frac{5}{3}log32+3−31log32−34−32log32=3−34+log32−31log32−32log32=35+(1−31−32)log32=35最終的な答え: 53\frac{5}{3}35(5) log35⋅log53\log_3 5 \cdot \log_5 3log35⋅log53底の変換公式より、log35⋅log53=log35⋅log33log35=log35⋅1log35=1\log_3 5 \cdot \log_5 3 = \log_3 5 \cdot \frac{\log_3 3}{\log_3 5} = \log_3 5 \cdot \frac{1}{\log_3 5} = 1log35⋅log53=log35⋅log35log33=log35⋅log351=1最終的な答え: 111(6) log23⋅log2725⋅log532\log_2 3 \cdot \log_{27} 25 \cdot \log_5 32log23⋅log2725⋅log532底の変換公式より、log23⋅log2725⋅log532=log23⋅log525log527⋅log532=log23⋅2log533⋅log525=log23⋅23log53⋅5log52=log23⋅23⋅1log53⋅5log52=log23⋅103⋅1log23log25⋅log52=103log23⋅log25log23⋅log22log25=103\log_2 3 \cdot \log_{27} 25 \cdot \log_5 32 = \log_2 3 \cdot \frac{\log_5 25}{\log_5 27} \cdot \log_5 32 = \log_2 3 \cdot \frac{2}{\log_5 3^3} \cdot \log_5 2^5 = \log_2 3 \cdot \frac{2}{3\log_5 3} \cdot 5\log_5 2 = \log_2 3 \cdot \frac{2}{3} \cdot \frac{1}{\log_5 3} \cdot 5\log_5 2 = \log_2 3 \cdot \frac{10}{3} \cdot \frac{1}{\frac{\log_2 3}{\log_2 5}} \cdot \log_5 2 = \frac{10}{3} \log_2 3 \cdot \frac{\log_2 5}{\log_2 3} \cdot \frac{\log_2 2}{\log_2 5} = \frac{10}{3}log23⋅log2725⋅log532=log23⋅log527log525⋅log532=log23⋅log5332⋅log525=log23⋅3log532⋅5log52=log23⋅32⋅log531⋅5log52=log23⋅310⋅log25log231⋅log52=310log23⋅log23log25⋅log25log22=310最終的な答え: 103\frac{10}{3}310(7) log43+log223\log_4 3 + \log_2 \frac{2}{\sqrt{3}}log43+log232log43=log23log24=log232\log_4 3 = \frac{\log_2 3}{\log_2 4} = \frac{\log_2 3}{2}log43=log24log23=2log23log223=log22−log23=1−12log23\log_2 \frac{2}{\sqrt{3}} = \log_2 2 - \log_2 \sqrt{3} = 1 - \frac{1}{2}\log_2 3log232=log22−log23=1−21log2312log23+1−12log23=1\frac{1}{2}\log_2 3 + 1 - \frac{1}{2}\log_2 3 = 121log23+1−21log23=1最終的な答え: 111(8) log36−log912\log_3 6 - \log_9 12log36−log912log36=log3(2⋅3)=log32+1\log_3 6 = \log_3 (2 \cdot 3) = \log_3 2 + 1log36=log3(2⋅3)=log32+1log912=log312log39=log3(4⋅3)2=log34+12=2log32+12=log32+12\log_9 12 = \frac{\log_3 12}{\log_3 9} = \frac{\log_3 (4 \cdot 3)}{2} = \frac{\log_3 4 + 1}{2} = \frac{2\log_3 2 + 1}{2} = \log_3 2 + \frac{1}{2}log912=log39log312=2log3(4⋅3)=2log34+1=22log32+1=log32+21log32+1−(log32+12)=1−12=12\log_3 2 + 1 - (\log_3 2 + \frac{1}{2}) = 1 - \frac{1}{2} = \frac{1}{2}log32+1−(log32+21)=1−21=21最終的な答え: 12\frac{1}{2}21(9) 2(14log2116)2(\frac{1}{4}\log_2 \frac{1}{16})2(41log2161)2(14log2116)=12log22−4=12(−4)=−22(\frac{1}{4}\log_2 \frac{1}{16}) = \frac{1}{2} \log_2 2^{-4} = \frac{1}{2} (-4) = -22(41log2161)=21log22−4=21(−4)=−2最終的な答え: −2-2−2