与えられた積分を計算します。積分は以下の通りです。 $\int \frac{3x^2 + 5}{x^4 + 2x^2 - 3} dx$解析学積分部分分数分解積分計算2025/5/291. 問題の内容与えられた積分を計算します。積分は以下の通りです。∫3x2+5x4+2x2−3dx\int \frac{3x^2 + 5}{x^4 + 2x^2 - 3} dx∫x4+2x2−33x2+5dx2. 解き方の手順まず、分母を因数分解します。x4+2x2−3=(x2+3)(x2−1)=(x2+3)(x−1)(x+1)x^4 + 2x^2 - 3 = (x^2 + 3)(x^2 - 1) = (x^2 + 3)(x - 1)(x + 1)x4+2x2−3=(x2+3)(x2−1)=(x2+3)(x−1)(x+1)次に、部分分数分解を行います。3x2+5x4+2x2−3=Ax−1+Bx+1+Cx+Dx2+3\frac{3x^2 + 5}{x^4 + 2x^2 - 3} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{Cx + D}{x^2 + 3}x4+2x2−33x2+5=x−1A+x+1B+x2+3Cx+D両辺に (x−1)(x+1)(x2+3)(x - 1)(x + 1)(x^2 + 3)(x−1)(x+1)(x2+3) をかけると、3x2+5=A(x+1)(x2+3)+B(x−1)(x2+3)+(Cx+D)(x−1)(x+1)3x^2 + 5 = A(x + 1)(x^2 + 3) + B(x - 1)(x^2 + 3) + (Cx + D)(x - 1)(x + 1)3x2+5=A(x+1)(x2+3)+B(x−1)(x2+3)+(Cx+D)(x−1)(x+1)3x2+5=A(x3+x2+3x+3)+B(x3−x2+3x−3)+(Cx+D)(x2−1)3x^2 + 5 = A(x^3 + x^2 + 3x + 3) + B(x^3 - x^2 + 3x - 3) + (Cx + D)(x^2 - 1)3x2+5=A(x3+x2+3x+3)+B(x3−x2+3x−3)+(Cx+D)(x2−1)3x2+5=A(x3+x2+3x+3)+B(x3−x2+3x−3)+Cx3−Cx+Dx2−D3x^2 + 5 = A(x^3 + x^2 + 3x + 3) + B(x^3 - x^2 + 3x - 3) + Cx^3 - Cx + Dx^2 - D3x2+5=A(x3+x2+3x+3)+B(x3−x2+3x−3)+Cx3−Cx+Dx2−D3x2+5=(A+B+C)x3+(A−B+D)x2+(3A+3B−C)x+(3A−3B−D)3x^2 + 5 = (A + B + C)x^3 + (A - B + D)x^2 + (3A + 3B - C)x + (3A - 3B - D)3x2+5=(A+B+C)x3+(A−B+D)x2+(3A+3B−C)x+(3A−3B−D)係数を比較して、次の連立方程式を得ます。A+B+C=0A + B + C = 0A+B+C=0A−B+D=3A - B + D = 3A−B+D=33A+3B−C=03A + 3B - C = 03A+3B−C=03A−3B−D=53A - 3B - D = 53A−3B−D=5最初の式と3番目の式から,4A+4B=04A + 4B = 04A+4B=0, よって B=−AB = -AB=−A.2番目の式と4番目の式から,4A+D=34A + D = 34A+D=3と6A−D=56A - D = 56A−D=5。これを足すと10A=810A = 810A=8なので、A=45A = \frac{4}{5}A=54.B=−A=−45B = -A = -\frac{4}{5}B=−A=−54.D=3−4A=3−165=−15D = 3 - 4A = 3 - \frac{16}{5} = -\frac{1}{5}D=3−4A=3−516=−51.C=−A−B=0C = -A - B = 0C=−A−B=0.よって、3x2+5x4+2x2−3=4/5x−1−4/5x+1−1/5x2+3\frac{3x^2 + 5}{x^4 + 2x^2 - 3} = \frac{4/5}{x - 1} - \frac{4/5}{x + 1} - \frac{1/5}{x^2 + 3}x4+2x2−33x2+5=x−14/5−x+14/5−x2+31/5∫3x2+5x4+2x2−3dx=45∫1x−1dx−45∫1x+1dx−15∫1x2+3dx\int \frac{3x^2 + 5}{x^4 + 2x^2 - 3} dx = \frac{4}{5} \int \frac{1}{x - 1} dx - \frac{4}{5} \int \frac{1}{x + 1} dx - \frac{1}{5} \int \frac{1}{x^2 + 3} dx∫x4+2x2−33x2+5dx=54∫x−11dx−54∫x+11dx−51∫x2+31dx=45ln∣x−1∣−45ln∣x+1∣−15⋅13arctanx3+C= \frac{4}{5} \ln |x - 1| - \frac{4}{5} \ln |x + 1| - \frac{1}{5} \cdot \frac{1}{\sqrt{3}} \arctan \frac{x}{\sqrt{3}} + C=54ln∣x−1∣−54ln∣x+1∣−51⋅31arctan3x+C=45ln∣x−1x+1∣−153arctanx3+C= \frac{4}{5} \ln \left| \frac{x - 1}{x + 1} \right| - \frac{1}{5\sqrt{3}} \arctan \frac{x}{\sqrt{3}} + C=54lnx+1x−1−531arctan3x+C3. 最終的な答え45ln∣x−1x+1∣−153arctanx3+C\frac{4}{5} \ln \left| \frac{x - 1}{x + 1} \right| - \frac{1}{5\sqrt{3}} \arctan \frac{x}{\sqrt{3}} + C54lnx+1x−1−531arctan3x+C