次の定積分の値を計算します。 $\int_{0}^{1} (x^4 + 2x^2 + 4) dx + \int_{1}^{0} (x^4 + 2x^2 + 4) dx$解析学定積分積分2025/5/311. 問題の内容次の定積分の値を計算します。∫01(x4+2x2+4)dx+∫10(x4+2x2+4)dx\int_{0}^{1} (x^4 + 2x^2 + 4) dx + \int_{1}^{0} (x^4 + 2x^2 + 4) dx∫01(x4+2x2+4)dx+∫10(x4+2x2+4)dx2. 解き方の手順まず、定積分の性質を利用して、積分区間が同じになるように変形します。∫abf(x)dx=−∫baf(x)dx\int_{a}^{b} f(x) dx = - \int_{b}^{a} f(x) dx∫abf(x)dx=−∫baf(x)dxを利用すると、∫10(x4+2x2+4)dx=−∫01(x4+2x2+4)dx\int_{1}^{0} (x^4 + 2x^2 + 4) dx = - \int_{0}^{1} (x^4 + 2x^2 + 4) dx∫10(x4+2x2+4)dx=−∫01(x4+2x2+4)dxしたがって、∫01(x4+2x2+4)dx+∫10(x4+2x2+4)dx=∫01(x4+2x2+4)dx−∫01(x4+2x2+4)dx=0\int_{0}^{1} (x^4 + 2x^2 + 4) dx + \int_{1}^{0} (x^4 + 2x^2 + 4) dx = \int_{0}^{1} (x^4 + 2x^2 + 4) dx - \int_{0}^{1} (x^4 + 2x^2 + 4) dx = 0∫01(x4+2x2+4)dx+∫10(x4+2x2+4)dx=∫01(x4+2x2+4)dx−∫01(x4+2x2+4)dx=0あるいは、∫01(x4+2x2+4)dx+∫10(x4+2x2+4)dx=∫01(x4+2x2+4)dx−∫01(x4+2x2+4)dx\int_{0}^{1} (x^4 + 2x^2 + 4) dx + \int_{1}^{0} (x^4 + 2x^2 + 4) dx = \int_{0}^{1} (x^4 + 2x^2 + 4) dx - \int_{0}^{1} (x^4 + 2x^2 + 4) dx ∫01(x4+2x2+4)dx+∫10(x4+2x2+4)dx=∫01(x4+2x2+4)dx−∫01(x4+2x2+4)dx =[x55+2x33+4x]01+[x55+2x33+4x]10= [\frac{x^5}{5} + \frac{2x^3}{3} + 4x]_0^1 + [\frac{x^5}{5} + \frac{2x^3}{3} + 4x]_1^0=[5x5+32x3+4x]01+[5x5+32x3+4x]10=(15+23+4)−(05+03+0)+(05+03+0)−(15+23+4)= (\frac{1}{5} + \frac{2}{3} + 4) - (\frac{0}{5} + \frac{0}{3} + 0) + (\frac{0}{5} + \frac{0}{3} + 0) - (\frac{1}{5} + \frac{2}{3} + 4) =(51+32+4)−(50+30+0)+(50+30+0)−(51+32+4)=(15+23+4)−(15+23+4)=0= (\frac{1}{5} + \frac{2}{3} + 4) - (\frac{1}{5} + \frac{2}{3} + 4) = 0=(51+32+4)−(51+32+4)=03. 最終的な答え0