## 1. 問題の内容解析学導関数三角関数微分合成関数階乗2025/5/30##1. 問題の内容次の関数の第n次導関数を求める問題です。(1) y=sin(x+2)y = \sin(x+2)y=sin(x+2)(4) y=11−xy = \frac{1}{1-x}y=1−x1##2. 解き方の手順**(1) y=sin(x+2)y = \sin(x+2)y=sin(x+2) の第n次導関数**sin関数の導関数は周期的に変化します。y=sin(x+2)y = \sin(x+2)y=sin(x+2)y′=cos(x+2)y' = \cos(x+2)y′=cos(x+2)y′′=−sin(x+2)y'' = -\sin(x+2)y′′=−sin(x+2)y′′′=−cos(x+2)y''' = -\cos(x+2)y′′′=−cos(x+2)y′′′′=sin(x+2)y'''' = \sin(x+2)y′′′′=sin(x+2)このパターンから、第n次導関数は次のように表せます。y(n)=sin(x+2+n⋅π2)y^{(n)} = \sin(x+2 + n \cdot \frac{\pi}{2})y(n)=sin(x+2+n⋅2π)これは、y(n)=cos(x+2+(n−1)⋅π2)y^{(n)} = \cos(x+2 + (n-1) \cdot \frac{\pi}{2})y(n)=cos(x+2+(n−1)⋅2π) とも表すことができます。**(4) y=11−xy = \frac{1}{1-x}y=1−x1 の第n次導関数**y=(1−x)−1y = (1-x)^{-1}y=(1−x)−1y′=(−1)(1−x)−2(−1)=(1−x)−2y' = (-1)(1-x)^{-2}(-1) = (1-x)^{-2}y′=(−1)(1−x)−2(−1)=(1−x)−2y′′=(−2)(1−x)−3(−1)=2(1−x)−3y'' = (-2)(1-x)^{-3}(-1) = 2(1-x)^{-3}y′′=(−2)(1−x)−3(−1)=2(1−x)−3y′′′=2(−3)(1−x)−4(−1)=2⋅3(1−x)−4y''' = 2(-3)(1-x)^{-4}(-1) = 2 \cdot 3 (1-x)^{-4}y′′′=2(−3)(1−x)−4(−1)=2⋅3(1−x)−4y′′′′=2⋅3(−4)(1−x)−5(−1)=2⋅3⋅4(1−x)−5y'''' = 2 \cdot 3 (-4)(1-x)^{-5}(-1) = 2 \cdot 3 \cdot 4 (1-x)^{-5}y′′′′=2⋅3(−4)(1−x)−5(−1)=2⋅3⋅4(1−x)−5一般的に、y(n)=n!(1−x)−(n+1)=n!(1−x)n+1y^{(n)} = n! (1-x)^{-(n+1)} = \frac{n!}{(1-x)^{n+1}}y(n)=n!(1−x)−(n+1)=(1−x)n+1n!##3. 最終的な答え**(1) y=sin(x+2)y = \sin(x+2)y=sin(x+2)**y(n)=sin(x+2+nπ2)y^{(n)} = \sin(x+2 + n \frac{\pi}{2})y(n)=sin(x+2+n2π)またはy(n)=cos(x+2+(n−1)π2)y^{(n)} = \cos(x+2 + (n-1) \frac{\pi}{2})y(n)=cos(x+2+(n−1)2π)**(4) y=11−xy = \frac{1}{1-x}y=1−x1**y(n)=n!(1−x)n+1y^{(n)} = \frac{n!}{(1-x)^{n+1}}y(n)=(1−x)n+1n!