1. 問題の内容
男子4人(A, B, C, D)と女子3人(E, F, G)が1列に並ぶとき、女子同士が隣り合わないような並び方は何通りあるか。
2. 解き方の手順
まず、男子4人を1列に並べる並び方を考えます。これは 通りです。
次に、女子が隣り合わないように並べるためには、男子の間に女子を入れるか、両端に女子を入れる必要があります。男子の並びの両端と間には5つの場所があります。
_ A _ B _ C _ D _
この5つの場所から3つを選び、そこに女子を並べます。場所の選び方は 通りです。そして、選んだ場所に女子3人を並べる並び方は 通りです。
したがって、女子が隣り合わない並び方は、
通りとなります。
3. 最終的な答え
女子同士が隣り合わない並び方は1440通り。