定積分 $\int_0^\pi \sin^2 x \cos^4 x dx$ を計算します。解析学定積分三角関数積分計算2025/5/311. 問題の内容定積分 ∫0πsin2xcos4xdx\int_0^\pi \sin^2 x \cos^4 x dx∫0πsin2xcos4xdx を計算します。2. 解き方の手順三角関数の積の積分を計算するために、まず積を和の形に変換します。sin2x=1−cos2x2\sin^2 x = \frac{1 - \cos 2x}{2}sin2x=21−cos2x と cos4x=(cos2x)2=(1+cos2x2)2=1+2cos2x+cos22x4=1+2cos2x+1+cos4x24=3+4cos2x+cos4x8\cos^4 x = (\cos^2 x)^2 = (\frac{1 + \cos 2x}{2})^2 = \frac{1 + 2 \cos 2x + \cos^2 2x}{4} = \frac{1 + 2 \cos 2x + \frac{1 + \cos 4x}{2}}{4} = \frac{3 + 4 \cos 2x + \cos 4x}{8}cos4x=(cos2x)2=(21+cos2x)2=41+2cos2x+cos22x=41+2cos2x+21+cos4x=83+4cos2x+cos4x を用いて、sin2xcos4x=1−cos2x2⋅3+4cos2x+cos4x8=3+4cos2x+cos4x−3cos2x−4cos22x−cos2xcos4x16=3+cos2x+cos4x−4(1+cos4x2)−12(cos6x+cos2x)16=3+cos2x+cos4x−2−2cos4x−12cos6x−12cos2x16=1+12cos2x−cos4x−12cos6x16\sin^2 x \cos^4 x = \frac{1 - \cos 2x}{2} \cdot \frac{3 + 4 \cos 2x + \cos 4x}{8} = \frac{3 + 4 \cos 2x + \cos 4x - 3 \cos 2x - 4 \cos^2 2x - \cos 2x \cos 4x}{16} = \frac{3 + \cos 2x + \cos 4x - 4(\frac{1 + \cos 4x}{2}) - \frac{1}{2}(\cos 6x + \cos 2x)}{16} = \frac{3 + \cos 2x + \cos 4x - 2 - 2 \cos 4x - \frac{1}{2} \cos 6x - \frac{1}{2} \cos 2x}{16} = \frac{1 + \frac{1}{2} \cos 2x - \cos 4x - \frac{1}{2} \cos 6x}{16}sin2xcos4x=21−cos2x⋅83+4cos2x+cos4x=163+4cos2x+cos4x−3cos2x−4cos22x−cos2xcos4x=163+cos2x+cos4x−4(21+cos4x)−21(cos6x+cos2x)=163+cos2x+cos4x−2−2cos4x−21cos6x−21cos2x=161+21cos2x−cos4x−21cos6xしたがって、∫0πsin2xcos4xdx=∫0π1+12cos2x−cos4x−12cos6x16dx=116∫0π(1+12cos2x−cos4x−12cos6x)dx=116[x+14sin2x−14sin4x−112sin6x]0π=116(π+0−0−0−0−0+0+0)=π16\int_0^\pi \sin^2 x \cos^4 x dx = \int_0^\pi \frac{1 + \frac{1}{2} \cos 2x - \cos 4x - \frac{1}{2} \cos 6x}{16} dx = \frac{1}{16} \int_0^\pi (1 + \frac{1}{2} \cos 2x - \cos 4x - \frac{1}{2} \cos 6x) dx = \frac{1}{16} [x + \frac{1}{4} \sin 2x - \frac{1}{4} \sin 4x - \frac{1}{12} \sin 6x]_0^\pi = \frac{1}{16} (\pi + 0 - 0 - 0 - 0 - 0 + 0 + 0) = \frac{\pi}{16}∫0πsin2xcos4xdx=∫0π161+21cos2x−cos4x−21cos6xdx=161∫0π(1+21cos2x−cos4x−21cos6x)dx=161[x+41sin2x−41sin4x−121sin6x]0π=161(π+0−0−0−0−0+0+0)=16π3. 最終的な答えπ16\frac{\pi}{16}16π