与えられた式を計算します。 $$\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} + \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$$代数学式の計算有理化根号2025/6/11. 問題の内容与えられた式を計算します。3−23+2+3+23−2\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} + \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}3+23−2+3−23+22. 解き方の手順まず、それぞれの分数を有理化します。3−23+2=(3−2)(3−2)(3+2)(3−2)=(3−2)23−2=(3−2)2=3−26+2=5−26\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}} = \frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})} = \frac{(\sqrt{3}-\sqrt{2})^2}{3-2} = (\sqrt{3}-\sqrt{2})^2 = 3 - 2\sqrt{6} + 2 = 5 - 2\sqrt{6}3+23−2=(3+2)(3−2)(3−2)(3−2)=3−2(3−2)2=(3−2)2=3−26+2=5−263+23−2=(3+2)(3+2)(3−2)(3+2)=(3+2)23−2=(3+2)2=3+26+2=5+26\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} = \frac{(\sqrt{3}+\sqrt{2})(\sqrt{3}+\sqrt{2})}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})} = \frac{(\sqrt{3}+\sqrt{2})^2}{3-2} = (\sqrt{3}+\sqrt{2})^2 = 3 + 2\sqrt{6} + 2 = 5 + 2\sqrt{6}3−23+2=(3−2)(3+2)(3+2)(3+2)=3−2(3+2)2=(3+2)2=3+26+2=5+26よって、与えられた式は5−26+5+26=105 - 2\sqrt{6} + 5 + 2\sqrt{6} = 105−26+5+26=103. 最終的な答え10