関数 $y = x\sin x$ の $n$ 次導関数を求めよ。解析学導関数ライプニッツの公式三角関数微分2025/6/11. 問題の内容関数 y=xsinxy = x\sin xy=xsinx の nnn 次導関数を求めよ。2. 解き方の手順ライプニッツの公式を利用する。ライプニッツの公式とは、2つの関数 u(x)u(x)u(x) と v(x)v(x)v(x) の積の nnn 次導関数を求める公式で、以下の通りである。(uv)(n)=∑k=0nnCku(n−k)v(k)(uv)^{(n)} = \sum_{k=0}^n {}_n C_k u^{(n-k)}v^{(k)}(uv)(n)=∑k=0nnCku(n−k)v(k)ここで、u(x)=xu(x) = xu(x)=x、v(x)=sinxv(x) = \sin xv(x)=sinx とおく。u(x)u(x)u(x) の導関数は以下のようになる。u′(x)=1u'(x) = 1u′(x)=1u′′(x)=0u''(x) = 0u′′(x)=0u(k)(x)=0u^{(k)}(x) = 0u(k)(x)=0 (k≥2k \ge 2k≥2)v(x)v(x)v(x) の導関数は以下のようになる。v′(x)=cosx=sin(x+π2)v'(x) = \cos x = \sin(x + \frac{\pi}{2})v′(x)=cosx=sin(x+2π)v′′(x)=−sinx=sin(x+2π2)v''(x) = -\sin x = \sin(x + 2\frac{\pi}{2})v′′(x)=−sinx=sin(x+22π)v(k)(x)=sin(x+kπ2)v^{(k)}(x) = \sin(x + k\frac{\pi}{2})v(k)(x)=sin(x+k2π)ライプニッツの公式に代入すると、y(n)=(xsinx)(n)=∑k=0nnCkx(n−k)(sinx)(k)y^{(n)} = (x\sin x)^{(n)} = \sum_{k=0}^n {}_n C_k x^{(n-k)} (\sin x)^{(k)}y(n)=(xsinx)(n)=∑k=0nnCkx(n−k)(sinx)(k)xxx の微分は2回以上すると0になるので、n−k=0,1n-k=0,1n−k=0,1 の項のみが残る。n−k=0n-k=0n−k=0 のとき k=nk=nk=n, nCn=1{}_n C_n = 1nCn=1, x(0)=xx^{(0)} = xx(0)=x, (sinx)(n)=sin(x+nπ2)(\sin x)^{(n)} = \sin(x + n\frac{\pi}{2})(sinx)(n)=sin(x+n2π)n−k=1n-k=1n−k=1 のとき k=n−1k=n-1k=n−1, nCn−1=n{}_n C_{n-1} = nnCn−1=n, x(1)=1x^{(1)} = 1x(1)=1, (sinx)(n−1)=sin(x+(n−1)π2)(\sin x)^{(n-1)} = \sin(x + (n-1)\frac{\pi}{2})(sinx)(n−1)=sin(x+(n−1)2π)したがって、y(n)=xsin(x+nπ2)+nsin(x+(n−1)π2)y^{(n)} = x\sin(x + n\frac{\pi}{2}) + n\sin(x + (n-1)\frac{\pi}{2})y(n)=xsin(x+n2π)+nsin(x+(n−1)2π)ここで、sin(x+(n−1)π2)=sin(x+nπ2−π2)=sin(x+nπ2)cos(π2)−cos(x+nπ2)sin(π2)=−cos(x+nπ2)\sin(x + (n-1)\frac{\pi}{2}) = \sin(x + n\frac{\pi}{2} - \frac{\pi}{2}) = \sin(x + n\frac{\pi}{2})\cos(\frac{\pi}{2}) - \cos(x + n\frac{\pi}{2})\sin(\frac{\pi}{2}) = -\cos(x + n\frac{\pi}{2})sin(x+(n−1)2π)=sin(x+n2π−2π)=sin(x+n2π)cos(2π)−cos(x+n2π)sin(2π)=−cos(x+n2π)y(n)=xsin(x+nπ2)−ncos(x+nπ2)y^{(n)} = x\sin(x + n\frac{\pi}{2}) - n\cos(x + n\frac{\pi}{2})y(n)=xsin(x+n2π)−ncos(x+n2π)3. 最終的な答えy(n)=xsin(x+nπ2)−ncos(x+nπ2)y^{(n)} = x\sin(x + \frac{n\pi}{2}) - n\cos(x + \frac{n\pi}{2})y(n)=xsin(x+2nπ)−ncos(x+2nπ)