与えられた式 $(x-1)(x+7)$ を展開して簡単にします。

代数学展開多項式因数分解代数
2025/6/1

1. 問題の内容

与えられた式 (x1)(x+7)(x-1)(x+7) を展開して簡単にします。

2. 解き方の手順

分配法則(展開)を使って式を計算します。
まず、xx(x+7)(x+7) にかけます。
x(x+7)=x2+7xx(x+7) = x^2 + 7x
次に、1-1(x+7)(x+7) にかけます。
1(x+7)=x7-1(x+7) = -x - 7
最後に、これらの結果を足し合わせます。
(x2+7x)+(x7)=x2+7xx7(x^2 + 7x) + (-x - 7) = x^2 + 7x - x - 7
同類項をまとめます。
x2+(7xx)7=x2+6x7x^2 + (7x - x) - 7 = x^2 + 6x - 7

3. 最終的な答え

x2+6x7x^2 + 6x - 7

「代数学」の関連問題

与えられた2次形式を直交変数変換によって対角化する問題です。具体的には、以下の3つの2次形式について、それぞれ対角化を行います。 (1) $q(x_1, x_2) = x_1^2 + 4x_1x_2 ...

2次形式直交変数変換固有値固有ベクトル対角化線形代数
2025/6/3

2桁の自然数があり、十の位の数と一の位の数の和は7です。また、十の位と一の位を入れ替えてできる数は、もとの数より27小さくなります。もとの自然数を求める問題です。

連立方程式文章題桁の数
2025/6/3

$y$ は $x$ に反比例し、$x=2$ のとき $y=6$ です。このとき、$y$ を $x$ の式で表しなさい。

反比例比例定数数式
2025/6/3

$y$ は $x$ に比例しており、$x = 4$ のとき $y = -8$ である。このとき、$y$ を $x$ の式で表しなさい。

比例一次関数比例定数
2025/6/3

$y$ は $x$ に反比例し、$x=2$ のとき $y=6$ です。このとき、$y$ を $x$ の式で表しなさい。

反比例1次関数変化の割合
2025/6/3

姉と妹がおはじきを合計57個持っています。姉のおはじきの個数は、妹のおはじきの個数の3倍より9個多いです。姉と妹それぞれのおはじきの個数を求めます。

一次方程式文章問題連立方程式
2025/6/3

連続する3つの自然数があり、それらの数の二乗の和が365であるとき、これら3つの自然数を求める問題です。

二次方程式整数方程式
2025/6/3

初項 $a=9$, 公差 $d=9$ の等差数列 $\{a_n\}$ において、$a_n = a + (n-1)d$ であるとき、$a_{10}$ の値を求める問題です。

等差数列数列一般項
2025/6/3

ある数 $x$ に3を加えて2乗したものと、$x$ に5をかけ39を加えたものが等しくなる。このとき、$x$ の値を求める。

二次方程式因数分解方程式解の公式
2025/6/3

与えられた2次方程式を解きます。 (1) $x^2 - 8x - 12 = 0$ (2) $3x^2 - 4x - 3 = 0$ (3) $9x^2 + 6\sqrt{3}x - 2 = 0$ (4)...

二次方程式解の公式平方根
2025/6/3