与えられた問題は、4、5、6の少なくとも1つで割り切れる数を求めるというものです。しかし、具体的な範囲が指定されていないため、4、5、6のいずれかの倍数を求めることになります。

算数倍数最小公倍数約数
2025/6/2

1. 問題の内容

与えられた問題は、4、5、6の少なくとも1つで割り切れる数を求めるというものです。しかし、具体的な範囲が指定されていないため、4、5、6のいずれかの倍数を求めることになります。

2. 解き方の手順

まず、4、5、6の最小公倍数(LCM)を求めます。
* 4 = 2 * 2
* 5 = 5
* 6 = 2 * 3
したがって、4、5、6の最小公倍数は
LCM(4,5,6)=2235=60LCM(4, 5, 6) = 2 * 2 * 3 * 5 = 60
4、5、6の少なくとも1つで割り切れる数は、4、5、6のいずれかの倍数です。最小公倍数60を求めることで、これらの数の公倍数を理解することができます。

3. 最終的な答え

4、5、6の少なくとも1つで割り切れる数は、4, 5, 6, 8, 10, 12, 15, 16, 18, 20, 24, 25, 28, 30, 32, 35, 36, 40, 42, 44, 45, 48, 50, 52, 54, 55, 56, 60, ... など無数に存在します。
しかし、最小公倍数が60であることから、60の倍数(60, 120, 180, ...)は必ず4, 5, 6すべてで割り切れます。

「算数」の関連問題

与えられた3つの根号を簡単にする問題です。 1. $\sqrt{7 + 4\sqrt{3}}$

根号根号の計算式の簡単化
2025/6/4

以下の3つの等差数列の和を求める問題です。 (1) $50 + 51 + 52 + ... + 100$ (2) $1 + 3 + 5 + ... + 101$ (奇数の和) (3) $2 + 4 +...

等差数列数列の和計算
2025/6/4

${}_9C_7$ の値を求めよ。

組み合わせ二項係数計算
2025/6/4

以下の3つの数列の和を求めます。 (1) $50 + 51 + 52 + \dots + 100$ (2) $1 + 3 + 5 + \dots + 101$ (奇数の和) (3) $2 + 4 + ...

数列等差数列計算
2025/6/4

異なる6枚のCDの中から4枚を選んで、1列に並べる並べ方は何通りあるか。

順列組み合わせ場合の数
2025/6/4

与えられた数式 $8 \div (-24) \times (-12)$ を計算します。

四則演算分数負の数
2025/6/3

与えられた数式の計算を実行します。数式は $13 - 5 + 2 - 16$ です。

四則演算計算
2025/6/3

与えられた分数の計算問題を解きます。 問題は以下の通りです。 $\frac{\frac{1}{5} \times (\frac{3}{2} - \frac{1}{3})}{\frac{1}{3} + ...

分数四則演算計算
2025/6/3

与えられた数式を計算し、その値を求めます。数式は次の通りです。 $(\frac{1}{3} + \frac{1}{2})^2 \times \frac{13}{5} \div \{8 \times \...

分数四則演算計算
2025/6/3

与えられた数式を計算する問題です。数式は以下の通りです。 $\{8 - (-3)\}^2 \times 2 - (-4)^3 \times 5^2 \div (-8)$

四則演算計算
2025/6/3