与えられた命題について、必要条件、十分条件、必要十分条件のいずれに該当するかを答える問題です。 (1) $x=2$ は $x^2 - x - 2 = 0$ であるための条件 (2) 自然数 $n$ が3の倍数であることは、自然数 $n$ が6の倍数であるための条件 (3) $xy + 1 = x + y$ は、$x = 1$ または $y = 1$ であるための条件
2025/6/2
1. 問題の内容
与えられた命題について、必要条件、十分条件、必要十分条件のいずれに該当するかを答える問題です。
(1) は であるための条件
(2) 自然数 が3の倍数であることは、自然数 が6の倍数であるための条件
(3) は、 または であるための条件
2. 解き方の手順
(1) ならば が成り立つかどうかを調べます。
を に代入すると、 となり、成り立ちます。
したがって、 は であるための十分条件です。
次に、 ならば が成り立つかどうかを調べます。
を因数分解すると、 となるので、 または となります。
したがって、 は であるための必要条件ではありません( でも成り立つため)。
よって、 は であるための十分条件であるが必要条件ではありません。
(2) 自然数 が3の倍数であることは、自然数 が6の倍数であるための条件を調べます。
が6の倍数ならば、 は3の倍数です。よって、 が3の倍数であるための必要条件です。
が3の倍数でも、 が6の倍数とは限りません(例えば )。したがって、 が3の倍数であるための十分条件ではありません。
よって、自然数 が3の倍数であることは、自然数 が6の倍数であるための必要条件であるが十分条件ではありません。
(3) は、 または であるための条件を調べます。
または ならば、 が成り立つかどうかを調べます。
のとき、 となり、成り立ちます。
のとき、 となり、成り立ちます。
したがって、 または は の十分条件です。
次に、 ならば、 または が成り立つかどうかを調べます。
を変形すると、
したがって、 または が成り立ちます。
つまり、 は、 または であるための必要条件です。
よって、 は、 または であるための必要十分条件です。
3. 最終的な答え
(1) ② 十分条件であるが必要条件でない
(2) ① 必要条件であるが十分条件ではない
(3) ③ 必要十分条件である