与えられた4つの式を展開せよ。 (1) $(x+\frac{1}{3})(x-\frac{2}{3})$ (4) $(x-3y)(x+7y)$ (7) $(3x-1)(3x-4)$ (10) $(6m+2)(6m-5)$代数学展開多項式因数分解2025/6/21. 問題の内容与えられた4つの式を展開せよ。(1) (x+13)(x−23)(x+\frac{1}{3})(x-\frac{2}{3})(x+31)(x−32)(4) (x−3y)(x+7y)(x-3y)(x+7y)(x−3y)(x+7y)(7) (3x−1)(3x−4)(3x-1)(3x-4)(3x−1)(3x−4)(10) (6m+2)(6m−5)(6m+2)(6m-5)(6m+2)(6m−5)2. 解き方の手順それぞれの式を展開する。(1) (x+13)(x−23)(x+\frac{1}{3})(x-\frac{2}{3})(x+31)(x−32)=x2+(13−23)x+(13)(−23)= x^2 + (\frac{1}{3}-\frac{2}{3})x + (\frac{1}{3})(-\frac{2}{3})=x2+(31−32)x+(31)(−32)=x2−13x−29= x^2 - \frac{1}{3}x - \frac{2}{9}=x2−31x−92(4) (x−3y)(x+7y)(x-3y)(x+7y)(x−3y)(x+7y)=x2+(7y−3y)x+(−3y)(7y)= x^2 + (7y-3y)x + (-3y)(7y)=x2+(7y−3y)x+(−3y)(7y)=x2+4xy−21y2= x^2 + 4xy - 21y^2=x2+4xy−21y2(7) (3x−1)(3x−4)(3x-1)(3x-4)(3x−1)(3x−4)=(3x)(3x)+(3x)(−4)+(−1)(3x)+(−1)(−4)= (3x)(3x) + (3x)(-4) + (-1)(3x) + (-1)(-4)=(3x)(3x)+(3x)(−4)+(−1)(3x)+(−1)(−4)=9x2−12x−3x+4= 9x^2 - 12x - 3x + 4=9x2−12x−3x+4=9x2−15x+4= 9x^2 - 15x + 4=9x2−15x+4(10) (6m+2)(6m−5)(6m+2)(6m-5)(6m+2)(6m−5)=(6m)(6m)+(6m)(−5)+(2)(6m)+(2)(−5)= (6m)(6m) + (6m)(-5) + (2)(6m) + (2)(-5)=(6m)(6m)+(6m)(−5)+(2)(6m)+(2)(−5)=36m2−30m+12m−10= 36m^2 - 30m + 12m - 10=36m2−30m+12m−10=36m2−18m−10= 36m^2 - 18m - 10=36m2−18m−103. 最終的な答え(1) x2−13x−29x^2 - \frac{1}{3}x - \frac{2}{9}x2−31x−92(4) x2+4xy−21y2x^2 + 4xy - 21y^2x2+4xy−21y2(7) 9x2−15x+49x^2 - 15x + 49x2−15x+4(10) 36m2−18m−1036m^2 - 18m - 1036m2−18m−10