以下の4つの和を求めます。 (1) $\sum_{k=1}^{n} (4k - 5)$ (2) $\sum_{k=1}^{n} (3k^2 - 7k + 4)$ (3) $\sum_{k=1}^{n} (k^3 + k)$ (4) $\sum_{k=1}^{n-1} 2k$代数学数列シグマ級数2025/6/31. 問題の内容以下の4つの和を求めます。(1) ∑k=1n(4k−5)\sum_{k=1}^{n} (4k - 5)∑k=1n(4k−5)(2) ∑k=1n(3k2−7k+4)\sum_{k=1}^{n} (3k^2 - 7k + 4)∑k=1n(3k2−7k+4)(3) ∑k=1n(k3+k)\sum_{k=1}^{n} (k^3 + k)∑k=1n(k3+k)(4) ∑k=1n−12k\sum_{k=1}^{n-1} 2k∑k=1n−12k2. 解き方の手順(1)∑k=1n(4k−5)=4∑k=1nk−∑k=1n5=4⋅n(n+1)2−5n=2n(n+1)−5n=2n2+2n−5n=2n2−3n\sum_{k=1}^{n} (4k - 5) = 4\sum_{k=1}^{n} k - \sum_{k=1}^{n} 5 = 4 \cdot \frac{n(n+1)}{2} - 5n = 2n(n+1) - 5n = 2n^2 + 2n - 5n = 2n^2 - 3n∑k=1n(4k−5)=4∑k=1nk−∑k=1n5=4⋅2n(n+1)−5n=2n(n+1)−5n=2n2+2n−5n=2n2−3n(2)∑k=1n(3k2−7k+4)=3∑k=1nk2−7∑k=1nk+∑k=1n4=3⋅n(n+1)(2n+1)6−7⋅n(n+1)2+4n=n(n+1)(2n+1)2−7n(n+1)2+4n=n2[(n+1)(2n+1)−7(n+1)+8]=n2[2n2+3n+1−7n−7+8]=n2[2n2−4n+2]=n(n2−2n+1)=n(n−1)2\sum_{k=1}^{n} (3k^2 - 7k + 4) = 3\sum_{k=1}^{n} k^2 - 7\sum_{k=1}^{n} k + \sum_{k=1}^{n} 4 = 3 \cdot \frac{n(n+1)(2n+1)}{6} - 7 \cdot \frac{n(n+1)}{2} + 4n = \frac{n(n+1)(2n+1)}{2} - \frac{7n(n+1)}{2} + 4n = \frac{n}{2}[(n+1)(2n+1) - 7(n+1) + 8] = \frac{n}{2}[2n^2 + 3n + 1 - 7n - 7 + 8] = \frac{n}{2}[2n^2 - 4n + 2] = n(n^2 - 2n + 1) = n(n-1)^2∑k=1n(3k2−7k+4)=3∑k=1nk2−7∑k=1nk+∑k=1n4=3⋅6n(n+1)(2n+1)−7⋅2n(n+1)+4n=2n(n+1)(2n+1)−27n(n+1)+4n=2n[(n+1)(2n+1)−7(n+1)+8]=2n[2n2+3n+1−7n−7+8]=2n[2n2−4n+2]=n(n2−2n+1)=n(n−1)2(3)∑k=1n(k3+k)=∑k=1nk3+∑k=1nk=(n(n+1)2)2+n(n+1)2=n2(n+1)24+n(n+1)2=n(n+1)4[n(n+1)+2]=n(n+1)4[n2+n+2]=n(n+1)(n2+n+2)4\sum_{k=1}^{n} (k^3 + k) = \sum_{k=1}^{n} k^3 + \sum_{k=1}^{n} k = (\frac{n(n+1)}{2})^2 + \frac{n(n+1)}{2} = \frac{n^2(n+1)^2}{4} + \frac{n(n+1)}{2} = \frac{n(n+1)}{4}[n(n+1) + 2] = \frac{n(n+1)}{4}[n^2 + n + 2] = \frac{n(n+1)(n^2+n+2)}{4}∑k=1n(k3+k)=∑k=1nk3+∑k=1nk=(2n(n+1))2+2n(n+1)=4n2(n+1)2+2n(n+1)=4n(n+1)[n(n+1)+2]=4n(n+1)[n2+n+2]=4n(n+1)(n2+n+2)(4)∑k=1n−12k=2∑k=1n−1k=2⋅(n−1)(n−1+1)2=2⋅(n−1)n2=n(n−1)=n2−n\sum_{k=1}^{n-1} 2k = 2\sum_{k=1}^{n-1} k = 2 \cdot \frac{(n-1)(n-1+1)}{2} = 2 \cdot \frac{(n-1)n}{2} = n(n-1) = n^2 - n∑k=1n−12k=2∑k=1n−1k=2⋅2(n−1)(n−1+1)=2⋅2(n−1)n=n(n−1)=n2−n3. 最終的な答え(1) 2n2−3n2n^2 - 3n2n2−3n(2) n(n−1)2n(n-1)^2n(n−1)2(3) n(n+1)(n2+n+2)4\frac{n(n+1)(n^2+n+2)}{4}4n(n+1)(n2+n+2)(4) n2−nn^2 - nn2−n