数列の和 $S$ を求める問題です。数列は $S = 1\cdot 1 + 3\cdot 3 + 5\cdot 3^2 + \cdots + (2n-1)\cdot 3^{n-1}$ で表されます。代数学数列級数等比数列和数学的帰納法2025/6/51. 問題の内容数列の和 SSS を求める問題です。数列は S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1S = 1\cdot 1 + 3\cdot 3 + 5\cdot 3^2 + \cdots + (2n-1)\cdot 3^{n-1}S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1 で表されます。2. 解き方の手順まず、SSS を書き下します。S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1S = 1\cdot 1 + 3\cdot 3 + 5\cdot 3^2 + \cdots + (2n-1)\cdot 3^{n-1}S=1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1次に、SSS に 333 をかけた 3S3S3S を書き下します。3S=1⋅3+3⋅32+5⋅33+⋯+(2n−3)⋅3n−1+(2n−1)⋅3n3S = 1\cdot 3 + 3\cdot 3^2 + 5\cdot 3^3 + \cdots + (2n-3)\cdot 3^{n-1} + (2n-1)\cdot 3^n3S=1⋅3+3⋅32+5⋅33+⋯+(2n−3)⋅3n−1+(2n−1)⋅3nSSS から 3S3S3S を引きます。S−3S=(1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1)−(1⋅3+3⋅32+5⋅33+⋯+(2n−3)⋅3n−1+(2n−1)⋅3n)S - 3S = (1\cdot 1 + 3\cdot 3 + 5\cdot 3^2 + \cdots + (2n-1)\cdot 3^{n-1}) - (1\cdot 3 + 3\cdot 3^2 + 5\cdot 3^3 + \cdots + (2n-3)\cdot 3^{n-1} + (2n-1)\cdot 3^n)S−3S=(1⋅1+3⋅3+5⋅32+⋯+(2n−1)⋅3n−1)−(1⋅3+3⋅32+5⋅33+⋯+(2n−3)⋅3n−1+(2n−1)⋅3n)−2S=1+2⋅3+2⋅32+⋯+2⋅3n−1−(2n−1)⋅3n-2S = 1 + 2\cdot 3 + 2\cdot 3^2 + \cdots + 2\cdot 3^{n-1} - (2n-1)\cdot 3^n−2S=1+2⋅3+2⋅32+⋯+2⋅3n−1−(2n−1)⋅3n−2S=1+2(3+32+⋯+3n−1)−(2n−1)⋅3n-2S = 1 + 2(3 + 3^2 + \cdots + 3^{n-1}) - (2n-1)\cdot 3^n−2S=1+2(3+32+⋯+3n−1)−(2n−1)⋅3n括弧の中身は等比数列の和なので、公式を用いて計算します。3+32+⋯+3n−1=3(3n−1−1)3−1=3(3n−1−1)23 + 3^2 + \cdots + 3^{n-1} = \frac{3(3^{n-1} - 1)}{3 - 1} = \frac{3(3^{n-1} - 1)}{2}3+32+⋯+3n−1=3−13(3n−1−1)=23(3n−1−1)これを代入します。−2S=1+2⋅3(3n−1−1)2−(2n−1)⋅3n-2S = 1 + 2 \cdot \frac{3(3^{n-1} - 1)}{2} - (2n-1)\cdot 3^n−2S=1+2⋅23(3n−1−1)−(2n−1)⋅3n−2S=1+3(3n−1−1)−(2n−1)⋅3n-2S = 1 + 3(3^{n-1} - 1) - (2n-1)\cdot 3^n−2S=1+3(3n−1−1)−(2n−1)⋅3n−2S=1+3n−3−(2n−1)⋅3n-2S = 1 + 3^n - 3 - (2n-1)\cdot 3^n−2S=1+3n−3−(2n−1)⋅3n−2S=3n−2−(2n−1)⋅3n-2S = 3^n - 2 - (2n-1)\cdot 3^n−2S=3n−2−(2n−1)⋅3n−2S=3n−2−2n⋅3n+3n-2S = 3^n - 2 - 2n\cdot 3^n + 3^n−2S=3n−2−2n⋅3n+3n−2S=2⋅3n−2−2n⋅3n-2S = 2\cdot 3^n - 2 - 2n\cdot 3^n−2S=2⋅3n−2−2n⋅3n−2S=(2−2n)3n−2-2S = (2 - 2n)3^n - 2−2S=(2−2n)3n−2S=(n−1)3n+1S = (n - 1)3^n + 1S=(n−1)3n+13. 最終的な答えS=(n−1)3n+1S = (n - 1)3^n + 1S=(n−1)3n+1