$x$ についての方程式 $4x - a = x - 1$ の解が $x = 3$ であるとき、$a$ の値を求める問題です。

代数学方程式一次方程式代入
2025/6/3

1. 問題の内容

xx についての方程式 4xa=x14x - a = x - 1 の解が x=3x = 3 であるとき、aa の値を求める問題です。

2. 解き方の手順

x=3x = 3 を方程式 4xa=x14x - a = x - 1 に代入します。
4(3)a=314(3) - a = 3 - 1
12a=212 - a = 2
aa について解くために、両辺に aa を足します。
12=2+a12 = 2 + a
両辺から 22 を引きます。
122=a12 - 2 = a
10=a10 = a
したがって、a=10a = 10 です。

3. 最終的な答え

a=10a = 10

「代数学」の関連問題

与えられた数式を簡略化して評価します。数式は次のとおりです。 $\frac{9(a + b)^3 - (a + 2b)^3 - (2a + b)^3}{3ab(a + b)}$

式の展開式の簡略化多項式分数式
2025/6/5

与えられた数式を簡略化する問題です。数式は以下の通りです。 $1 + \sqrt{\frac{x}{y}} - \frac{2}{\sqrt{\frac{y}{x}}} + \frac{1}{1 - ...

数式簡略化代数式分数式平方根因数分解式の計算
2025/6/5

与えられた数式を簡略化する問題です。数式は以下の通りです。 $1 + \sqrt{\frac{x}{y}} - \frac{2}{\sqrt{\frac{y}{x}}} + \frac{1}{1 - ...

式の簡略化分数式代数計算
2025/6/5

3次方程式 $x^3 - 5x^2 + ax + b = 0$ が $3+2i$ を解に持つとき、実数の定数 $a, b$ の値と他の解を求めよ。

三次方程式複素数解解の公式係数の比較
2025/6/5

第3項が6、第7項が22である等差数列$\{a_n\}$について、以下の問いに答える。 (1) 初項と公差を求めよ。 (2) 一般項を求めよ。 (3) 第50項を求めよ。 (4) 50 は第何項か。

数列等差数列一般項初項公差
2025/6/5

与えられた18個の数式を計算し、結果を求める問題です。

展開平方根式の計算有理化
2025/6/5

与えられた数学の問題集から、指定された問題を解きます。具体的には、以下の問題を解きます。 (15) $(\sqrt{3}+2)^2 - \sqrt{48}$ (16) $(\sqrt{5}+3)(\s...

根号式の展開計算
2025/6/5

与えられた2次関数 $y=2x^2 + 4x$ を、平方完成を用いて $y=a(x-p)^2 + q$ の形に変形する問題です。

二次関数平方完成数式変形
2025/6/5

与えられた3つの二次関数を扱います。 それぞれの関数は、 $y = 2x^2 + 4x$ $y = -x^2 + 4x$ $y = 3x^2 - 6x + 1$ です。問題の具体的な指示が不明なので、...

二次関数平方完成頂点
2025/6/5

与えられた式 $(x+y)(a-2b)$ を展開せよ。

展開多項式分配法則
2025/6/5