$y$ は $x$ に反比例し、$x=3$ のとき $y=6$ である。$x=2$ のときの $y$ の値を求めよ。

代数学反比例比例定数方程式
2025/6/3

1. 問題の内容

yyxx に反比例し、x=3x=3 のとき y=6y=6 である。x=2x=2 のときの yy の値を求めよ。

2. 解き方の手順

反比例の関係は y=axy = \frac{a}{x} と表せる。
x=3x=3 のとき y=6y=6 であるから、これを代入して比例定数 aa を求める。
6=a36 = \frac{a}{3}
a=6×3=18a = 6 \times 3 = 18
よって、反比例の式は y=18xy = \frac{18}{x} となる。
x=2x=2 のときの yy の値を求めるために、この式に x=2x=2 を代入する。
y=182=9y = \frac{18}{2} = 9

3. 最終的な答え

y=9y=9

「代数学」の関連問題

問題は $(\sqrt{3} + \sqrt{2})^2 - \sqrt{24}$ を計算することです。

平方根式の計算有理化展開
2025/6/5

問題 (14) の $( \sqrt{3} + \sqrt{2} )^2 - \sqrt{24}$ を計算する。

平方根式の計算展開有理化
2025/6/5

行列 $A$ による変換によって、与えられた直線 $L$ がどのような直線に移されるかを求める問題です。具体的には、以下の2つのケースについて考えます。 (1) $A = \begin{pmatrix...

線形代数行列一次変換直線の変換
2025/6/5

3つの数学の問題があります。 (7) $(5+\sqrt{3})(5-\sqrt{3})$ (10) $(\sqrt{3}+\sqrt{2})(\sqrt{6}-5)$ (13) $(\sqrt{7}...

式の展開平方根計算
2025/6/5

画像に写っている3つの数式をそれぞれ計算する問題です。 (6) $(3\sqrt{5}-\sqrt{10})^2$ (9) $(2\sqrt{3}+1)(\sqrt{12}-1)$ (12) $(2-...

平方根式の計算展開有理化
2025/6/5

$(\sqrt{6} + \sqrt{10})^2$ を計算する問題です。

平方根展開計算
2025/6/5

画像には、いくつかの数学の問題が含まれています。具体的には、乗法公式の利用、分母の有理化、式の値、根号のついた数の整数部分と小数部分に関する問題があります。ここでは、式の値に関する問題(1)を解きます...

式の値平方根展開
2025/6/5

(1) $\frac{1}{x} - \frac{1}{y} = \frac{1}{4}$ を満たす正の整数 $x, y$ の組をすべて求める。 (2) $x^2 + 6y^2 = 360$ を満たす...

整数問題分数方程式二次方程式不定方程式
2025/6/5

(1) $\log_{10}10$, $\log_{10}5$, $\log_{10}15$ をそれぞれ求める問題。ただし、$\log_{10}5$と$\log_{10}15$は、$\log_{10}...

対数指数桁数常用対数対数の性質
2025/6/5

与えられた式 $\sqrt{x^3 - 9}$ を評価します。ただし、問題文に等号が付いているため、この式が特定の値に等しい場合を考え、その値を求めることを目指します。

根号方程式立方根式の評価
2025/6/5