関数 $f(x) = \sin(4x)$ を積分してください。

解析学積分三角関数不定積分
2025/6/3

1. 問題の内容

関数 f(x)=sin(4x)f(x) = \sin(4x) を積分してください。

2. 解き方の手順

sin(ax)\sin(ax) の積分は、sin(ax)dx=1acos(ax)+C\int \sin(ax) dx = -\frac{1}{a}\cos(ax) + C で計算できます。
この問題では、a=4a = 4 なので、
sin(4x)dx=14cos(4x)+C\int \sin(4x) dx = -\frac{1}{4}\cos(4x) + C
となります。ここで、CC は積分定数です。

3. 最終的な答え

14cos(4x)+C-\frac{1}{4}\cos(4x) + C

「解析学」の関連問題

$\lim_{t \to 0} \frac{\sin^{-1} t}{t}$ を求める問題です。

極限ロピタルの定理逆三角関数微分
2025/6/6

問題(9)は、極限 $\lim_{x \to \infty} \left(1 + \frac{a}{x^2 + x}\right)^{x^2}$ を計算することです。 問題(10)は、極限 $\lim...

極限指数関数対数関数ロピタルの定理
2025/6/6

次の極限を求めます。 $\lim_{x\to 0} (1 + x + x^2)^{1/x}$

極限ロピタルの定理自然対数指数関数
2025/6/6

ロピタルの定理を用いて、以下の3つの極限値を求めます。 (1) $\lim_{x \to 0} (1 + \sin 2x)^{\frac{1}{x}}$ (2) $\lim_{x \to \infty...

極限ロピタルの定理微積分指数関数逆三角関数
2025/6/6

次の極限を求めます。 $\lim_{x \to 0} \frac{\tan^{-1} x}{x}$

極限ロピタルの定理逆正接関数微分
2025/6/6

以下の極限をロピタルの定理を用いて求めます。 $\lim_{x \to \infty} \frac{2e^x + x^2}{e^{x+1} + x^3}$

極限ロピタルの定理微分指数関数
2025/6/6

関数 $f(x, y) = x^4 - 2x^2 + y^2$ の停留点を求める問題です。偏微分を計算し、それらが同時に0になる点を求め、問題文の条件 ⑦ < ⑨ < ⑪ を満たすように停留点のx座標...

多変数関数偏微分停留点極値
2025/6/6

問題は、与えられた関数に対して偏微分を計算し、空欄に当てはまる数値を答える問題です。 (1) $f(x, y) = 9x^2 - 6xy + 4y^2$ の偏微分 $f_x(x, y)$ と $f_y...

偏微分多変数関数
2025/6/6

ライプニッツの公式を用いて、与えられた関数の高次導関数を求める問題です。具体的には、以下の4つの関数について、指定された階数の導関数を計算します。 (1) $((x^2 + 3x - 1)e^x)''...

ライプニッツの公式高次導関数微分
2025/6/6

与えられた関数 $f(x) = ((x^2 + 2x) \sin x)^4$ の微分を求める問題です。

微分合成関数の微分積の微分
2025/6/6