$a = \frac{2}{3-\sqrt{5}}$のとき、$a+\frac{1}{a}$, $a^2+\frac{1}{a^2}$, $a^5+\frac{1}{a^5}$の値をそれぞれ求めよ。代数学式の計算有理化代数式2025/6/31. 問題の内容a=23−5a = \frac{2}{3-\sqrt{5}}a=3−52のとき、a+1aa+\frac{1}{a}a+a1, a2+1a2a^2+\frac{1}{a^2}a2+a21, a5+1a5a^5+\frac{1}{a^5}a5+a51の値をそれぞれ求めよ。2. 解き方の手順まず、aaaの分母を有理化する。a=23−5=2(3+5)(3−5)(3+5)=2(3+5)9−5=2(3+5)4=3+52a = \frac{2}{3-\sqrt{5}} = \frac{2(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})} = \frac{2(3+\sqrt{5})}{9-5} = \frac{2(3+\sqrt{5})}{4} = \frac{3+\sqrt{5}}{2}a=3−52=(3−5)(3+5)2(3+5)=9−52(3+5)=42(3+5)=23+5次に、1a\frac{1}{a}a1を求める。1a=23+5=2(3−5)(3+5)(3−5)=2(3−5)9−5=2(3−5)4=3−52\frac{1}{a} = \frac{2}{3+\sqrt{5}} = \frac{2(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} = \frac{2(3-\sqrt{5})}{9-5} = \frac{2(3-\sqrt{5})}{4} = \frac{3-\sqrt{5}}{2}a1=3+52=(3+5)(3−5)2(3−5)=9−52(3−5)=42(3−5)=23−5a+1aa+\frac{1}{a}a+a1を計算する。a+1a=3+52+3−52=3+5+3−52=62=3a+\frac{1}{a} = \frac{3+\sqrt{5}}{2} + \frac{3-\sqrt{5}}{2} = \frac{3+\sqrt{5}+3-\sqrt{5}}{2} = \frac{6}{2} = 3a+a1=23+5+23−5=23+5+3−5=26=3a2+1a2a^2+\frac{1}{a^2}a2+a21を計算する。(a+1a)2=a2+2+1a2(a+\frac{1}{a})^2 = a^2 + 2 + \frac{1}{a^2}(a+a1)2=a2+2+a21より、a2+1a2=(a+1a)2−2=32−2=9−2=7a^2+\frac{1}{a^2} = (a+\frac{1}{a})^2 - 2 = 3^2 - 2 = 9-2 = 7a2+a21=(a+a1)2−2=32−2=9−2=7a5+1a5a^5+\frac{1}{a^5}a5+a51を計算する。(a2+1a2)(a3+1a3)=a5+a+1a+1a5(a^2+\frac{1}{a^2})(a^3+\frac{1}{a^3}) = a^5 + a + \frac{1}{a} + \frac{1}{a^5}(a2+a21)(a3+a31)=a5+a+a1+a51より、a5+1a5=(a2+1a2)(a3+1a3)−(a+1a)a^5+\frac{1}{a^5} = (a^2+\frac{1}{a^2})(a^3+\frac{1}{a^3}) - (a+\frac{1}{a})a5+a51=(a2+a21)(a3+a31)−(a+a1)a3+1a3=(a+1a)3−3(a+1a)=33−3(3)=27−9=18a^3+\frac{1}{a^3} = (a+\frac{1}{a})^3 - 3(a+\frac{1}{a}) = 3^3 - 3(3) = 27-9 = 18a3+a31=(a+a1)3−3(a+a1)=33−3(3)=27−9=18a5+1a5=(7)(18)−(3)=126−3=123a^5+\frac{1}{a^5} = (7)(18) - (3) = 126 - 3 = 123a5+a51=(7)(18)−(3)=126−3=1233. 最終的な答えa+1a=3a+\frac{1}{a} = 3a+a1=3a2+1a2=7a^2+\frac{1}{a^2} = 7a2+a21=7a5+1a5=123a^5+\frac{1}{a^5} = 123a5+a51=123