貨幣需要関数が $\frac{m}{P_1} = 0.5(1+i)Y$ で与えられているとき、現在の一般物価水準 $P_1=1$、実質所得 $Y=1$、名目貨幣供給 $M=3$ のケースで、貨幣市場を均衡させる名目金利 $i$ を求める問題です。

応用数学経済学貨幣需要金利数式処理均衡
2025/6/4

1. 問題の内容

貨幣需要関数が mP1=0.5(1+i)Y\frac{m}{P_1} = 0.5(1+i)Y で与えられているとき、現在の一般物価水準 P1=1P_1=1、実質所得 Y=1Y=1、名目貨幣供給 M=3M=3 のケースで、貨幣市場を均衡させる名目金利 ii を求める問題です。

2. 解き方の手順

貨幣市場が均衡するのは、貨幣需要と貨幣供給が等しくなるときです。貨幣需要は mm で表され、貨幣供給は MM で表されます。
よって、均衡条件は、
M=mM = m
です。
与えられた貨幣需要関数より、m=0.5(1+i)P1Ym = 0.5(1+i)P_1Y です。また、問題文より、M=3M = 3P1=1P_1 = 1Y=1Y = 1 なので、これらを均衡条件に代入すると、
3=0.5(1+i)113 = 0.5(1+i) \cdot 1 \cdot 1
となります。これを ii について解きます。
3=0.5(1+i)3 = 0.5(1+i)
6=1+i6 = 1+i
i=61i = 6 - 1
i=5i = 5

3. 最終的な答え

貨幣市場を均衡させる名目金利 ii は 5 です。

「応用数学」の関連問題

直径 $d = 30 \text{ mm}$、長さ $l = 500 \text{ mm}$ の円形断面軸の一端が固定されており、軸の中央から先端にかけて単位長さあたり $\tau = 300 \te...

材料力学ねじり積分断面二次極モーメント横弾性係数
2025/6/6

ベクトル $\mathbf{A} = \mathbf{i} + \mathbf{j} + 3\mathbf{k}$, $\mathbf{B} = \mathbf{i} - 2\mathbf{j} + ...

ベクトルベクトルの内積ベクトルの外積ラプラシアン
2025/6/6

直径 $d = 20 \text{ mm}$、長さ $l = 400 \text{ mm}$ の円形断面軸の一端が壁に固定されている。軸端に $T = 300 \text{ Nm}$ のトルクを作用さ...

力学材料力学ねじりトルク極断面二次モーメント横弾性係数単位変換
2025/6/6

ある船が川を $60 km$ 上るのに $5$ 時間、下るのに $3$ 時間かかった。このとき、以下の2つの問いに答える。 (1) この船の静水時の速さを求めなさい。 (2) この川の流れの速さを求め...

速度距離連立方程式文章問題
2025/6/6

2種類の財 $x$ と $y$ があり、効用関数が $u(x, y) = x^{\frac{1}{7}}y^{\frac{6}{7}}$ で与えられています。財 $x$ の価格を $p_x > 0$、...

経済学効用関数最適化ラグランジュ乗数法ミクロ経済学
2025/6/6

2つの財 $x$ と $y$ があり、効用関数が $u(x, y) = x^{\frac{1}{7}}y^{\frac{6}{7}}$ で与えられています。各財の価格は $p_x > 0$、$p_y ...

最適化効用関数ラグランジュ乗数法経済学
2025/6/6

この問題は、効用最大化問題を解くものです。所得$m$、x財の価格$p_x$、y財の価格$p_y$が与えられたとき、それぞれの効用関数$u(x,y)$のもとで、最適な消費計画$(x, y)$を求める問題...

効用最大化ラグランジュ乗数法経済学偏微分
2025/6/6

効用関数 $u(x, y) = xy$ のもとで、x財の価格が $p_x > 0$、y財の価格が $p_y > 0$、所得が $m > 0$ であるときの最適消費プラン (x, y) を求める問題です...

最適化効用関数ラグランジュ乗数法経済学
2025/6/6

$L(x, y, \lambda) = x^\alpha y^{1-\alpha} + \lambda(M - p_x x - p_y y)$ ここで $\lambda$ はラグランジュ乗数で...

経済学ミクロ経済学効用関数需要関数ラグランジュ乗数
2025/6/6

与えられた制約条件の下で、関数を最大化する最適化問題を解きます。 (1) $\max_{x,y} xy$ subject to $x+y-2=0$ (2) $\max_{x,y} x^3y^2$ su...

最適化制約付き最適化ラグランジュの未定乗数法微分最大値
2025/6/6