与えられた式 $(5)(3x - 5)$ を展開して簡略化します。代数学展開分配法則一次式2025/3/271. 問題の内容与えられた式 (5)(3x−5)(5)(3x - 5)(5)(3x−5) を展開して簡略化します。2. 解き方の手順分配法則を利用して式を展開します。具体的には、5を括弧内の各項に掛けます。5(3x−5)=5(3x)−5(5)5(3x - 5) = 5(3x) - 5(5)5(3x−5)=5(3x)−5(5)それぞれの項を計算します。5(3x)=15x5(3x) = 15x5(3x)=15x5(5)=255(5) = 255(5)=25したがって、5(3x−5)=15x−255(3x - 5) = 15x - 255(3x−5)=15x−253. 最終的な答え15x−2515x - 2515x−25