直径50mm、長さ1.35mの単純支持梁の中央に800Nの集中荷重が作用している。縦弾性係数が206GPaであるとき、最大たわみを求める。慣性モーメント $I$ は $I = \frac{\pi}{64}d^4$ であり、最大たわみ $\delta_{max}$ は $\delta_{max} = \beta \frac{WL^3}{EI}$ で与えられる。ただし、$\beta = \frac{1}{48}$である。
2025/6/4
1. 問題の内容
直径50mm、長さ1.35mの単純支持梁の中央に800Nの集中荷重が作用している。縦弾性係数が206GPaであるとき、最大たわみを求める。慣性モーメント は であり、最大たわみ は で与えられる。ただし、である。
2. 解き方の手順
まず、直径 mmを用いて慣性モーメント を計算する。
mm
次に、長さ m を mm に変換する。 mm。
荷重 N、弾性係数 GPa を MPa に変換する。 MPa。
mm
3. 最終的な答え
1:
2: 64
3: 50
4: 306796.1576
5:
6: 800
7: (1350)
8: (206 x 10^3)
9: (306796.1576)
10: 5.26
11: 5.26
最終的な答え: 5.26 mm