複素数平面上の3点 $\alpha = 1 + i$, $\beta = 3 + 2i$, $\gamma$ が正三角形の頂点となるような $\gamma$ を求める。幾何学複素数平面正三角形複素数幾何2025/6/61. 問題の内容複素数平面上の3点 α=1+i\alpha = 1 + iα=1+i, β=3+2i\beta = 3 + 2iβ=3+2i, γ\gammaγ が正三角形の頂点となるような γ\gammaγ を求める。2. 解き方の手順正三角形の頂点をなす複素数α,β,γ\alpha, \beta, \gammaα,β,γの間には、以下の関係式が成り立つ。(α−γ)=e±iπ/3(β−γ)(\alpha - \gamma) = e^{\pm i\pi/3} (\beta - \gamma)(α−γ)=e±iπ/3(β−γ)γ\gammaγについて解くために、式を変形する。α−γ=(cos(±π/3)+isin(±π/3))(β−γ)\alpha - \gamma = (\cos(\pm \pi/3) + i \sin(\pm \pi/3)) (\beta - \gamma)α−γ=(cos(±π/3)+isin(±π/3))(β−γ)α−γ=(12±i32)(β−γ)\alpha - \gamma = (\frac{1}{2} \pm i \frac{\sqrt{3}}{2}) (\beta - \gamma)α−γ=(21±i23)(β−γ)場合分けして考える。(i) α−γ=(12+i32)(β−γ)\alpha - \gamma = (\frac{1}{2} + i \frac{\sqrt{3}}{2}) (\beta - \gamma)α−γ=(21+i23)(β−γ)のときα−γ=(12+i32)β−(12+i32)γ\alpha - \gamma = (\frac{1}{2} + i \frac{\sqrt{3}}{2}) \beta - (\frac{1}{2} + i \frac{\sqrt{3}}{2}) \gammaα−γ=(21+i23)β−(21+i23)γγ−(12+i32)γ=α−(12+i32)β\gamma - (\frac{1}{2} + i \frac{\sqrt{3}}{2}) \gamma = \alpha - (\frac{1}{2} + i \frac{\sqrt{3}}{2}) \betaγ−(21+i23)γ=α−(21+i23)β(1−12−i32)γ=α−(12+i32)β(1 - \frac{1}{2} - i \frac{\sqrt{3}}{2}) \gamma = \alpha - (\frac{1}{2} + i \frac{\sqrt{3}}{2}) \beta(1−21−i23)γ=α−(21+i23)β(12−i32)γ=(1+i)−(12+i32)(3+2i)(\frac{1}{2} - i \frac{\sqrt{3}}{2}) \gamma = (1 + i) - (\frac{1}{2} + i \frac{\sqrt{3}}{2}) (3 + 2i)(21−i23)γ=(1+i)−(21+i23)(3+2i)(12−i32)γ=1+i−(32+i3+i+i23)(\frac{1}{2} - i \frac{\sqrt{3}}{2}) \gamma = 1 + i - (\frac{3}{2} + i\sqrt{3} + i + i^2 \sqrt{3})(21−i23)γ=1+i−(23+i3+i+i23)(12−i32)γ=1+i−(32−3+i(3+1))(\frac{1}{2} - i \frac{\sqrt{3}}{2}) \gamma = 1 + i - (\frac{3}{2} - \sqrt{3} + i(\sqrt{3} + 1))(21−i23)γ=1+i−(23−3+i(3+1))(12−i32)γ=1−32+3+i(1−3−1)(\frac{1}{2} - i \frac{\sqrt{3}}{2}) \gamma = 1 - \frac{3}{2} + \sqrt{3} + i(1 - \sqrt{3} - 1)(21−i23)γ=1−23+3+i(1−3−1)(12−i32)γ=−12+3−i3(\frac{1}{2} - i \frac{\sqrt{3}}{2}) \gamma = -\frac{1}{2} + \sqrt{3} - i\sqrt{3}(21−i23)γ=−21+3−i3γ=−12+3−i312−i32=−1+23−2i31−i3=(−1+23−2i3)(1+i3)(1−i3)(1+i3)\gamma = \frac{-\frac{1}{2} + \sqrt{3} - i\sqrt{3}}{\frac{1}{2} - i \frac{\sqrt{3}}{2}} = \frac{-1 + 2\sqrt{3} - 2i\sqrt{3}}{1 - i\sqrt{3}} = \frac{(-1 + 2\sqrt{3} - 2i\sqrt{3})(1 + i\sqrt{3})}{(1 - i\sqrt{3})(1 + i\sqrt{3})}γ=21−i23−21+3−i3=1−i3−1+23−2i3=(1−i3)(1+i3)(−1+23−2i3)(1+i3)γ=−1+23−2i3−i3+2i33−2i2(3)21+3\gamma = \frac{-1 + 2\sqrt{3} - 2i\sqrt{3} -i\sqrt{3} + 2i\sqrt{3}\sqrt{3} -2i^2 (\sqrt{3})^2}{1 + 3}γ=1+3−1+23−2i3−i3+2i33−2i2(3)2γ=−1+23−3i3+6i−2(−1)(3)4=−1+6+23+i(6−33)4=5+23+i(6−33)4\gamma = \frac{-1 + 2\sqrt{3} - 3i\sqrt{3} + 6i -2(-1)(3)}{4} = \frac{-1 + 6 + 2\sqrt{3} + i(6 - 3\sqrt{3})}{4} = \frac{5 + 2\sqrt{3} + i(6 - 3\sqrt{3})}{4}γ=4−1+23−3i3+6i−2(−1)(3)=4−1+6+23+i(6−33)=45+23+i(6−33)γ=5+234+i6−334=5+234+i2(3−323)4\gamma = \frac{5 + 2\sqrt{3}}{4} + i\frac{6 - 3\sqrt{3}}{4} = \frac{5 + 2\sqrt{3}}{4} + i\frac{2(3 - \frac{3}{2}\sqrt{3})}{4}γ=45+23+i46−33=45+23+i42(3−233)(ii) α−γ=(12−i32)(β−γ)\alpha - \gamma = (\frac{1}{2} - i \frac{\sqrt{3}}{2}) (\beta - \gamma)α−γ=(21−i23)(β−γ)のときα−γ=(12−i32)β−(12−i32)γ\alpha - \gamma = (\frac{1}{2} - i \frac{\sqrt{3}}{2}) \beta - (\frac{1}{2} - i \frac{\sqrt{3}}{2}) \gammaα−γ=(21−i23)β−(21−i23)γγ−(12−i32)γ=α−(12−i32)β\gamma - (\frac{1}{2} - i \frac{\sqrt{3}}{2}) \gamma = \alpha - (\frac{1}{2} - i \frac{\sqrt{3}}{2}) \betaγ−(21−i23)γ=α−(21−i23)β(1−12+i32)γ=(1+i)−(12−i32)(3+2i)(1 - \frac{1}{2} + i \frac{\sqrt{3}}{2}) \gamma = (1 + i) - (\frac{1}{2} - i \frac{\sqrt{3}}{2}) (3 + 2i)(1−21+i23)γ=(1+i)−(21−i23)(3+2i)(12+i32)γ=1+i−(32−i3+i−i23)(\frac{1}{2} + i \frac{\sqrt{3}}{2}) \gamma = 1 + i - (\frac{3}{2} - i\sqrt{3} + i - i^2 \sqrt{3})(21+i23)γ=1+i−(23−i3+i−i23)(12+i32)γ=1+i−(32+3+i(1−3))(\frac{1}{2} + i \frac{\sqrt{3}}{2}) \gamma = 1 + i - (\frac{3}{2} + \sqrt{3} + i(1 - \sqrt{3}))(21+i23)γ=1+i−(23+3+i(1−3))(12+i32)γ=1−32−3+i(1−1+3)(\frac{1}{2} + i \frac{\sqrt{3}}{2}) \gamma = 1 - \frac{3}{2} - \sqrt{3} + i(1 - 1 + \sqrt{3})(21+i23)γ=1−23−3+i(1−1+3)(12+i32)γ=−12−3+i3(\frac{1}{2} + i \frac{\sqrt{3}}{2}) \gamma = -\frac{1}{2} - \sqrt{3} + i\sqrt{3}(21+i23)γ=−21−3+i3γ=−12−3+i312+i32=−1−23+2i31+i3=(−1−23+2i3)(1−i3)(1+i3)(1−i3)\gamma = \frac{-\frac{1}{2} - \sqrt{3} + i\sqrt{3}}{\frac{1}{2} + i \frac{\sqrt{3}}{2}} = \frac{-1 - 2\sqrt{3} + 2i\sqrt{3}}{1 + i\sqrt{3}} = \frac{(-1 - 2\sqrt{3} + 2i\sqrt{3})(1 - i\sqrt{3})}{(1 + i\sqrt{3})(1 - i\sqrt{3})}γ=21+i23−21−3+i3=1+i3−1−23+2i3=(1+i3)(1−i3)(−1−23+2i3)(1−i3)γ=−1−23+2i3+i3+2i33−2i2(3)21+3\gamma = \frac{-1 - 2\sqrt{3} + 2i\sqrt{3} +i\sqrt{3} + 2i\sqrt{3}\sqrt{3} -2i^2 (\sqrt{3})^2}{1 + 3}γ=1+3−1−23+2i3+i3+2i33−2i2(3)2γ=−1−23+3i3+6i−2(−1)(3)4=−1+6−23+i(6+33)4=5−23+i(6+33)4\gamma = \frac{-1 - 2\sqrt{3} + 3i\sqrt{3} + 6i -2(-1)(3)}{4} = \frac{-1 + 6 - 2\sqrt{3} + i(6 + 3\sqrt{3})}{4} = \frac{5 - 2\sqrt{3} + i(6 + 3\sqrt{3})}{4}γ=4−1−23+3i3+6i−2(−1)(3)=4−1+6−23+i(6+33)=45−23+i(6+33)γ=5−234+i6+334\gamma = \frac{5 - 2\sqrt{3}}{4} + i\frac{6 + 3\sqrt{3}}{4}γ=45−23+i46+333. 最終的な答えγ=5+234+i6−334\gamma = \frac{5 + 2\sqrt{3}}{4} + i\frac{6 - 3\sqrt{3}}{4}γ=45+23+i46−33 または γ=5−234+i6+334\gamma = \frac{5 - 2\sqrt{3}}{4} + i\frac{6 + 3\sqrt{3}}{4}γ=45−23+i46+33