与えられた12個の関数について、それぞれ微分を計算します。解析学微分三角関数合成関数の微分積の微分商の微分2025/6/8了解しました。画像にある関数の微分問題を解きます。1. 問題の内容与えられた12個の関数について、それぞれ微分を計算します。2. 解き方の手順各関数について、以下の手順に従って微分を求めます。(1) y=2x−cosxy = 2x - \cos xy=2x−cosxdy/dx=2−(−sinx)=2+sinxdy/dx = 2 - (-\sin x) = 2 + \sin xdy/dx=2−(−sinx)=2+sinx(2) y=sinx−tanxy = \sin x - \tan xy=sinx−tanxdy/dx=cosx−1cos2x=cosx−sec2xdy/dx = \cos x - \frac{1}{\cos^2 x} = \cos x - \sec^2 xdy/dx=cosx−cos2x1=cosx−sec2x(3) y=cos(2x−1)y = \cos(2x - 1)y=cos(2x−1)dy/dx=−sin(2x−1)⋅2=−2sin(2x−1)dy/dx = -\sin(2x - 1) \cdot 2 = -2\sin(2x - 1)dy/dx=−sin(2x−1)⋅2=−2sin(2x−1)(4) y=tan3xy = \tan 3xy=tan3xdy/dx=1cos23x⋅3=3sec23xdy/dx = \frac{1}{\cos^2 3x} \cdot 3 = 3\sec^2 3xdy/dx=cos23x1⋅3=3sec23x(5) y=sinx2y = \sin x^2y=sinx2dy/dx=cosx2⋅2x=2xcosx2dy/dx = \cos x^2 \cdot 2x = 2x \cos x^2dy/dx=cosx2⋅2x=2xcosx2(6) y=tanx2y = \tan x^2y=tanx2dy/dx=sec2x2⋅2x=2xsec2x2dy/dx = \sec^2 x^2 \cdot 2x = 2x \sec^2 x^2dy/dx=sec2x2⋅2x=2xsec2x2(7) y=2xsinxy = 2x \sin xy=2xsinxdy/dx=2sinx+2xcosx=2(sinx+xcosx)dy/dx = 2 \sin x + 2x \cos x = 2(\sin x + x \cos x)dy/dx=2sinx+2xcosx=2(sinx+xcosx)(8) y=cos3xy = \cos^3 xy=cos3xdy/dx=3cos2x⋅(−sinx)=−3cos2xsinxdy/dx = 3 \cos^2 x \cdot (-\sin x) = -3 \cos^2 x \sin xdy/dx=3cos2x⋅(−sinx)=−3cos2xsinx(9) y=1cosx=secxy = \frac{1}{\cos x} = \sec xy=cosx1=secxdy/dx=sinxcos2x=secxtanxdy/dx = \frac{\sin x}{\cos^2 x} = \sec x \tan xdy/dx=cos2xsinx=secxtanx(10) y=sin22xy = \sin^2 2xy=sin22xdy/dx=2sin2x⋅cos2x⋅2=4sin2xcos2x=2sin4xdy/dx = 2 \sin 2x \cdot \cos 2x \cdot 2 = 4 \sin 2x \cos 2x = 2 \sin 4xdy/dx=2sin2x⋅cos2x⋅2=4sin2xcos2x=2sin4x(11) y=sinxcosx=12sin2xy = \sin x \cos x = \frac{1}{2} \sin 2xy=sinxcosx=21sin2xdy/dx=12cos2x⋅2=cos2xdy/dx = \frac{1}{2} \cos 2x \cdot 2 = \cos 2xdy/dx=21cos2x⋅2=cos2x(12) y=sin3xcos5xy = \sin 3x \cos 5xy=sin3xcos5x積和の公式より,y=12(sin(3x+5x)+sin(3x−5x))y = \frac{1}{2}(\sin(3x+5x) + \sin(3x-5x))y=21(sin(3x+5x)+sin(3x−5x))y=12(sin(8x)−sin(2x))y = \frac{1}{2}(\sin(8x) - \sin(2x))y=21(sin(8x)−sin(2x))dy/dx=12(8cos8x−2cos2x)=4cos8x−cos2xdy/dx = \frac{1}{2}(8\cos 8x - 2\cos 2x) = 4\cos 8x - \cos 2xdy/dx=21(8cos8x−2cos2x)=4cos8x−cos2x3. 最終的な答え(1) dy/dx=2+sinxdy/dx = 2 + \sin xdy/dx=2+sinx(2) dy/dx=cosx−sec2xdy/dx = \cos x - \sec^2 xdy/dx=cosx−sec2x(3) dy/dx=−2sin(2x−1)dy/dx = -2\sin(2x - 1)dy/dx=−2sin(2x−1)(4) dy/dx=3sec23xdy/dx = 3\sec^2 3xdy/dx=3sec23x(5) dy/dx=2xcosx2dy/dx = 2x \cos x^2dy/dx=2xcosx2(6) dy/dx=2xsec2x2dy/dx = 2x \sec^2 x^2dy/dx=2xsec2x2(7) dy/dx=2(sinx+xcosx)dy/dx = 2(\sin x + x \cos x)dy/dx=2(sinx+xcosx)(8) dy/dx=−3cos2xsinxdy/dx = -3 \cos^2 x \sin xdy/dx=−3cos2xsinx(9) dy/dx=secxtanxdy/dx = \sec x \tan xdy/dx=secxtanx(10) dy/dx=2sin4xdy/dx = 2 \sin 4xdy/dx=2sin4x(11) dy/dx=cos2xdy/dx = \cos 2xdy/dx=cos2x(12) dy/dx=4cos8x−cos2xdy/dx = 4\cos 8x - \cos 2xdy/dx=4cos8x−cos2x