一次方程式 $5x - 3 = 7$ を解いて、$x$ の値を求める。

代数学一次方程式方程式解の計算
2025/6/8

1. 問題の内容

一次方程式 5x3=75x - 3 = 7 を解いて、xx の値を求める。

2. 解き方の手順

与えられた方程式は 5x3=75x - 3 = 7 です。
まず、方程式の両辺に3を加えます。
5x3+3=7+35x - 3 + 3 = 7 + 3
5x=105x = 10
次に、方程式の両辺を5で割ります。
5x5=105\frac{5x}{5} = \frac{10}{5}
x=2x = 2

3. 最終的な答え

x=2x = 2

「代数学」の関連問題

$x+y+z=4$、$xy+yz+zx=2$のとき、$x^2+y^2+z^2$の値を求めよ。

多項式式の展開対称式
2025/6/8

与えられた連立方程式を解いて、$x$ と $y$ の値を求める。連立方程式は以下の通りです。 $ \begin{cases} 2x + 7y = -1 \\ x = 1 - 3y \end{cases...

連立方程式代入法一次方程式
2025/6/8

$0 \le \theta < 2\pi$ のとき、$f(\theta) = \cos 2\theta - \sin \theta$ とする。 (1) 方程式 $2\sin\theta - 1 = 0...

三角関数三角方程式三角不等式二次関数
2025/6/8

係数が実数である3次式 $P(x) = x^3 + ax^2 + bx + a$ について、以下の問いに答えます。 (1) $a=0, b=1$ のとき、方程式 $P(x) = 0$ を解きます。 (...

三次方程式複素数解の公式因数定理
2025/6/8

与えられた2つの式をそれぞれ簡単にします。 (1) $\sqrt{7+4\sqrt{3}}$ (2) $\sqrt{28-12\sqrt{5}}$

根号平方根計算
2025/6/8

与えられた連立一次方程式を解き、解をベクトル和の形で表現します。問題は3つあります。 (1) $\begin{cases} x+y+z+w=1 \\ x+z-w=2 \end{cases}$ (2) ...

連立一次方程式線形代数ベクトル
2025/6/8

次の3つの絶対値の式について、方程式または不等式を解きます。 (1) $|x| = 4$ (2) $|x| < 2$ (3) $|x| \geq 5$

絶対値方程式不等式数直線
2025/6/8

与えられた連立一次方程式を解き、解をベクトルの和の形で表す問題です。3つの連立一次方程式が与えられています。 (1) $\begin{cases} x + y + z + w = 1 \\ x + z...

連立一次方程式ベクトル
2025/6/8

$(1-\sqrt{2})(3+4\sqrt{2})$ を計算せよ。

式の計算平方根展開
2025/6/8

(1) 多項式 $P(x) = x^3 - ax - 2$ が $x-2$ で割り切れるとき、$a$ の値を求める。 (2) 多項式 $P(x) = x^4 + 5x^2 + a^2x + 2a$ を...

多項式剰余の定理因数定理因数分解代入
2025/6/8