$x = 4 + \sqrt{2}$、 $y = 4 - \sqrt{2}$ のとき、次の式の値を求めます。 (1) $x^2 + y^2$ (2) $\frac{y}{x} + \frac{x}{y}$代数学式の計算平方根有理化因数分解2025/6/81. 問題の内容x=4+2x = 4 + \sqrt{2}x=4+2、 y=4−2y = 4 - \sqrt{2}y=4−2 のとき、次の式の値を求めます。(1) x2+y2x^2 + y^2x2+y2(2) yx+xy\frac{y}{x} + \frac{x}{y}xy+yx2. 解き方の手順(1) x2+y2x^2 + y^2x2+y2 を計算します。x2=(4+2)2=16+82+2=18+82x^2 = (4 + \sqrt{2})^2 = 16 + 8\sqrt{2} + 2 = 18 + 8\sqrt{2}x2=(4+2)2=16+82+2=18+82y2=(4−2)2=16−82+2=18−82y^2 = (4 - \sqrt{2})^2 = 16 - 8\sqrt{2} + 2 = 18 - 8\sqrt{2}y2=(4−2)2=16−82+2=18−82x2+y2=(18+82)+(18−82)=36x^2 + y^2 = (18 + 8\sqrt{2}) + (18 - 8\sqrt{2}) = 36x2+y2=(18+82)+(18−82)=36(2) yx+xy\frac{y}{x} + \frac{x}{y}xy+yx を計算します。yx+xy=y2+x2xy\frac{y}{x} + \frac{x}{y} = \frac{y^2 + x^2}{xy}xy+yx=xyy2+x2x2+y2=36x^2 + y^2 = 36x2+y2=36 (上記(1)の結果)xy=(4+2)(4−2)=16−2=14xy = (4 + \sqrt{2})(4 - \sqrt{2}) = 16 - 2 = 14xy=(4+2)(4−2)=16−2=14yx+xy=3614=187\frac{y}{x} + \frac{x}{y} = \frac{36}{14} = \frac{18}{7}xy+yx=1436=7183. 最終的な答え(1) x2+y2=36x^2 + y^2 = 36x2+y2=36(2) yx+xy=187\frac{y}{x} + \frac{x}{y} = \frac{18}{7}xy+yx=718