定積分 $\int_{0}^{\sqrt{3}} \frac{x^2}{1+x^2} dx$ を計算します。解析学定積分積分arctan部分分数分解2025/6/91. 問題の内容定積分 ∫03x21+x2dx\int_{0}^{\sqrt{3}} \frac{x^2}{1+x^2} dx∫031+x2x2dx を計算します。2. 解き方の手順まず、被積分関数を変形します。x21+x2=1+x2−11+x2=1−11+x2\frac{x^2}{1+x^2} = \frac{1+x^2-1}{1+x^2} = 1 - \frac{1}{1+x^2}1+x2x2=1+x21+x2−1=1−1+x21よって、積分は以下のようになります。∫03x21+x2dx=∫03(1−11+x2)dx=∫031dx−∫0311+x2dx\int_{0}^{\sqrt{3}} \frac{x^2}{1+x^2} dx = \int_{0}^{\sqrt{3}} \left(1 - \frac{1}{1+x^2}\right) dx = \int_{0}^{\sqrt{3}} 1 dx - \int_{0}^{\sqrt{3}} \frac{1}{1+x^2} dx∫031+x2x2dx=∫03(1−1+x21)dx=∫031dx−∫031+x21dxそれぞれの積分を計算します。∫031dx=[x]03=3−0=3\int_{0}^{\sqrt{3}} 1 dx = \left[x\right]_{0}^{\sqrt{3}} = \sqrt{3} - 0 = \sqrt{3}∫031dx=[x]03=3−0=3∫0311+x2dx=[arctan(x)]03=arctan(3)−arctan(0)=π3−0=π3\int_{0}^{\sqrt{3}} \frac{1}{1+x^2} dx = \left[\arctan(x)\right]_{0}^{\sqrt{3}} = \arctan(\sqrt{3}) - \arctan(0) = \frac{\pi}{3} - 0 = \frac{\pi}{3}∫031+x21dx=[arctan(x)]03=arctan(3)−arctan(0)=3π−0=3πしたがって、∫03x21+x2dx=3−π3\int_{0}^{\sqrt{3}} \frac{x^2}{1+x^2} dx = \sqrt{3} - \frac{\pi}{3}∫031+x2x2dx=3−3π3. 最終的な答え3−π3\sqrt{3} - \frac{\pi}{3}3−3π