数列 $2, 6, 18, 54, 162, \dots$ の初項から第8項までの和を求めます。この数列は等比数列であり、初項と公比を求め、シグマ記号を用いて和を表し、最終的な和の値を計算します。
2025/6/10
1. 問題の内容
数列 の初項から第8項までの和を求めます。この数列は等比数列であり、初項と公比を求め、シグマ記号を用いて和を表し、最終的な和の値を計算します。
2. 解き方の手順
* 数列の初項を求めます。これは数列の最初の項なので、 です。
* 数列の公比を求めます。これは隣り合う項の比なので、 です。
* 初項から第8項までの和をシグマ記号で表します。一般項は なので、シグマ記号を用いた表現は以下のようになります。
* 等比数列の和の公式を用いて、和を計算します。等比数列の初項から第 項までの和 は、
で与えられます。ここで、, , なので、
したがって、
ア = 2 (c)
イ = 3 (d)
ウ = 8 (i)
エ = 2 (c)
オ = 3 (d)
カ = 1 (b)
キクケコ = 6560
3. 最終的な答え
ア = 2
イ = 3
ウ = 8
エ = 2
オ = 3
カ = 1
キクケコ = 6560