与えられた不等式 $-0.03 \le 0.1 - 0.02x < 0.3$ を解く問題です。

代数学不等式一次不等式解の範囲
2025/6/10

1. 問題の内容

与えられた不等式 0.030.10.02x<0.3-0.03 \le 0.1 - 0.02x < 0.3 を解く問題です。

2. 解き方の手順

まず、不等式全体を100倍して、小数点をなくします。
3102x<30-3 \le 10 - 2x < 30
この不等式は、3102x -3 \le 10 - 2x 102x<30 10 - 2x < 30 という二つの不等式に分解できます。
一つ目の不等式3102x-3 \le 10 - 2xを解きます。
3102x -3 \le 10 - 2x
2x10+3 2x \le 10 + 3
2x13 2x \le 13
x132 x \le \frac{13}{2}
二つ目の不等式102x<3010 - 2x < 30を解きます。
102x<30 10 - 2x < 30
2x<3010 -2x < 30 - 10
2x<20 -2x < 20
x>10 x > -10
したがって、xxの範囲は 10<x132-10 < x \le \frac{13}{2}となります。

3. 最終的な答え

10<x132-10 < x \le \frac{13}{2}

「代数学」の関連問題

与えられた不等式を解きます。問題は2つあります。 (1) $1 \le x \le 15 - 2x$ (2) $-2 < 3x + 1 < 5$

不等式一次不等式不等式の解法
2025/6/14

ある製品の原価が4月には1個あたり100円、5月には1個あたり115円だった。2カ月の合計生産個数は10000個で、1個あたりの平均原価は109円だった。4月の生産個数を求める。

一次方程式文章問題数量関係
2025/6/14

PはQよりも10歳若い。また、Pの年齢はQの年齢の5/7である。このとき、Pの年齢を求める。

方程式連立方程式文章問題
2025/6/14

$a$は定数とする。関数 $f(x) = (x^2+2x+2)^2 - 2a(x^2+2x+2) + a$ の最小値を$n$とする。 (1) $t = x^2 + 2x + 2$とする。$x$がすべて...

二次関数最小値平方完成場合分け
2025/6/14

与えられた連立不等式を解きます。連立不等式は2つあり、それぞれ以下の通りです。 (1) $ \begin{cases} 6x-9 < 2x-1 \\ 3x+7 \leq 4(2x+3) \end{ca...

連立不等式不等式一次不等式
2025/6/14

第3項が1、初項から第8項までの和が-10である等差数列$\{a_n\}$がある。 (1) 数列$\{a_n\}$の初項と公差を求める。 (2) 数列$\{a_n\}$を、第$k$群に$2^{k-1}...

等差数列数列群数列連立方程式
2025/6/14

問題は等差数列 $\{a_n\}$ に関するものです。 (1) 第3項が1、初項から第8項までの和が-10であるとき、初項と公差を求めます。 (2) 数列 $\{a_n\}$ を第k群に $2^{k-...

数列等差数列群数列
2025/6/14

等差数列 $\{a_n\}$ について、第3項が1、初項から第8項までの和が-10である。 (1) $\{a_n\}$ の初項と公差を求める。 (2) $\{a_n\}$ を、第 $k$ 群に $2^...

等差数列数列群数列
2025/6/14

1個120円の菓子Aと1個80円の菓子Bを合わせて30個買う。100円の箱に入れてもらう。菓子代と箱代の合計金額を3000円以下にするとき、菓子Aは最大で何個買えるかを求める。

不等式文章問題一次不等式
2025/6/14

与えられた不等式 $x^2 + 6x + 9 \leqq 0$ を解く。

不等式二次不等式因数分解解の公式
2025/6/14