関数 $y = \tan(\sin(\log x))$ の導関数を求める。解析学導関数合成関数三角関数対数関数微分2025/6/111. 問題の内容関数 y=tan(sin(logx))y = \tan(\sin(\log x))y=tan(sin(logx)) の導関数を求める。2. 解き方の手順合成関数の微分を用いる。まず、u=sin(logx)u = \sin(\log x)u=sin(logx), v=logxv = \log xv=logx とおく。すると、y=tan(u)y = \tan(u)y=tan(u), u=sin(v)u = \sin(v)u=sin(v), v=logxv = \log xv=logx となる。それぞれの導関数を求める。dydu=1cos2(u)\frac{dy}{du} = \frac{1}{\cos^2(u)}dudy=cos2(u)1dudv=cos(v)\frac{du}{dv} = \cos(v)dvdu=cos(v)dvdx=1x\frac{dv}{dx} = \frac{1}{x}dxdv=x1合成関数の微分より、dydx=dydu⋅dudv⋅dvdx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}dxdy=dudy⋅dvdu⋅dxdv=1cos2(u)⋅cos(v)⋅1x= \frac{1}{\cos^2(u)} \cdot \cos(v) \cdot \frac{1}{x}=cos2(u)1⋅cos(v)⋅x1=1cos2(sin(logx))⋅cos(logx)⋅1x= \frac{1}{\cos^2(\sin(\log x))} \cdot \cos(\log x) \cdot \frac{1}{x}=cos2(sin(logx))1⋅cos(logx)⋅x1=cos(logx)xcos2(sin(logx))= \frac{\cos(\log x)}{x \cos^2(\sin(\log x))}=xcos2(sin(logx))cos(logx)ここで、1cos2(x)=1+tan2(x)\frac{1}{\cos^2(x)} = 1 + \tan^2(x)cos2(x)1=1+tan2(x) を利用すると、dydx=cos(logx)x(1+tan2(sin(logx)))\frac{dy}{dx} = \frac{\cos(\log x)}{x} (1 + \tan^2(\sin(\log x)))dxdy=xcos(logx)(1+tan2(sin(logx)))3. 最終的な答えdydx=cos(logx)xcos2(sin(logx))\frac{dy}{dx} = \frac{\cos(\log x)}{x \cos^2(\sin(\log x))}dxdy=xcos2(sin(logx))cos(logx)または、dydx=cos(logx)x(1+tan2(sin(logx)))\frac{dy}{dx} = \frac{\cos(\log x)}{x} (1 + \tan^2(\sin(\log x)))dxdy=xcos(logx)(1+tan2(sin(logx)))