逆三角関数 $arccos(\frac{1+2sin(x)}{2+sin(x)})$ を微分せよ。解析学微分逆三角関数三角関数合成関数の微分導関数2025/6/121. 問題の内容逆三角関数 arccos(1+2sin(x)2+sin(x))arccos(\frac{1+2sin(x)}{2+sin(x)})arccos(2+sin(x)1+2sin(x)) を微分せよ。2. 解き方の手順関数 y=arccos(u)y = arccos(u)y=arccos(u) の微分は dydx=−11−u2dudx\frac{dy}{dx} = -\frac{1}{\sqrt{1-u^2}}\frac{du}{dx}dxdy=−1−u21dxdu であり、u=1+2sin(x)2+sin(x)u = \frac{1+2sin(x)}{2+sin(x)}u=2+sin(x)1+2sin(x) とおく。まず、uuu の微分を計算する。dudx=2cos(x)(2+sin(x))−(1+2sin(x))cos(x)(2+sin(x))2\frac{du}{dx} = \frac{2cos(x)(2+sin(x)) - (1+2sin(x))cos(x)}{(2+sin(x))^2}dxdu=(2+sin(x))22cos(x)(2+sin(x))−(1+2sin(x))cos(x)dudx=4cos(x)+2sin(x)cos(x)−cos(x)−2sin(x)cos(x)(2+sin(x))2\frac{du}{dx} = \frac{4cos(x) + 2sin(x)cos(x) - cos(x) - 2sin(x)cos(x)}{(2+sin(x))^2}dxdu=(2+sin(x))24cos(x)+2sin(x)cos(x)−cos(x)−2sin(x)cos(x)dudx=3cos(x)(2+sin(x))2\frac{du}{dx} = \frac{3cos(x)}{(2+sin(x))^2}dxdu=(2+sin(x))23cos(x)次に、1−u21-u^21−u2 を計算する。1−u2=1−(1+2sin(x)2+sin(x))2=(2+sin(x))2−(1+2sin(x))2(2+sin(x))21-u^2 = 1 - (\frac{1+2sin(x)}{2+sin(x)})^2 = \frac{(2+sin(x))^2 - (1+2sin(x))^2}{(2+sin(x))^2}1−u2=1−(2+sin(x)1+2sin(x))2=(2+sin(x))2(2+sin(x))2−(1+2sin(x))21−u2=4+4sin(x)+sin2(x)−(1+4sin(x)+4sin2(x))(2+sin(x))21-u^2 = \frac{4+4sin(x)+sin^2(x) - (1+4sin(x)+4sin^2(x))}{(2+sin(x))^2}1−u2=(2+sin(x))24+4sin(x)+sin2(x)−(1+4sin(x)+4sin2(x))1−u2=3−3sin2(x)(2+sin(x))2=3(1−sin2(x))(2+sin(x))2=3cos2(x)(2+sin(x))21-u^2 = \frac{3 - 3sin^2(x)}{(2+sin(x))^2} = \frac{3(1-sin^2(x))}{(2+sin(x))^2} = \frac{3cos^2(x)}{(2+sin(x))^2}1−u2=(2+sin(x))23−3sin2(x)=(2+sin(x))23(1−sin2(x))=(2+sin(x))23cos2(x)したがって、 1−u2=3∣cos(x)∣2+sin(x)\sqrt{1-u^2} = \frac{\sqrt{3}|cos(x)|}{2+sin(x)}1−u2=2+sin(x)3∣cos(x)∣よって、dydx=−11−u2dudx=−2+sin(x)3∣cos(x)∣⋅3cos(x)(2+sin(x))2\frac{dy}{dx} = -\frac{1}{\sqrt{1-u^2}} \frac{du}{dx} = -\frac{2+sin(x)}{\sqrt{3}|cos(x)|} \cdot \frac{3cos(x)}{(2+sin(x))^2}dxdy=−1−u21dxdu=−3∣cos(x)∣2+sin(x)⋅(2+sin(x))23cos(x)dydx=−3cos(x)3∣cos(x)∣(2+sin(x))\frac{dy}{dx} = -\frac{3cos(x)}{\sqrt{3}|cos(x)|(2+sin(x))}dxdy=−3∣cos(x)∣(2+sin(x))3cos(x)dydx=−3sign(cos(x))2+sin(x)\frac{dy}{dx} = -\frac{\sqrt{3}sign(cos(x))}{2+sin(x)}dxdy=−2+sin(x)3sign(cos(x))3. 最終的な答え−3sign(cos(x))2+sin(x)-\frac{\sqrt{3}sign(cos(x))}{2+sin(x)}−2+sin(x)3sign(cos(x))